Чертеж с размерами подвески автомобиля

Чертеж с размерами подвески автомобиля

Техподдержка: +7 (343) 777-00-42 Пн-Вс c 9:00 -18:00 admin@ChertegRF.ru

Мои желания

Чертеж на формате А1 обзора конструкций подвесок:

  1. Рессорная зависимая: состоит из балки и продольных полуэллиптических рессор. Как правило, снабжается гидравлическими амортизаторами. В зависимости от грузоподъемности меняется только количество листов. Такая подвеска слабо приспособлена для прицепов, поскольку не рассчитана на режимы «пустой»/«груженый».
  2. Рычажно-пружинная независимая: имеет продольные или поперечные рычаги, цилиндрические пружины и гидравлические амортизаторы. Пружинные упругие элементы подвески имеют большие рабочие ходы, чем рессоры и потому обеспечивают более высокую плавность хода.
  3. Торсионная независимая: имеет установленные поперек кузова упругие металлические элементы, работающие на кручение (торсионы). Один конец торсиона зафиксирован на кузове, а к другому крепится маятниковый рычаг со ступицей, соединенный с кузовом через амортизатор. Обеспечение необходимого рабочего хода подвески достигается подбором длины торсиона. Чем больше рабочий ход подвески, тем длиннее должны быть торсионы.
  4. Резиножгутовая независимая: состоит из трех профилированных труб, две из которых вставлены внутрь третьей. Между трубами защемлены резиновые жгуты. Наружная труба закреплена поперечно на кузове. К торцам внутренних труб крепятся маятниковые рычаги со ступицами. Подвески такого типа практически не требуют обслуживания.
  5. Пружинная зависимая: отличается от рессорной тем, что в качестве упругих элементов используются цилиндрические пружины, а балка крепится к кузову двумя продольными и одной поперечной тягами.
Читайте также:  Проверьте датчик скорости автомобиля

Подвеска осуществляет упругую связь колёс с несущей системой автомобиля (рамой или кузовом) и служит для обеспечения плавности хода автомобиля и повышения безопасности его движения.

Плавность хода — свойство автомобиля защищать перевозимых людей и грузы от воздействия неровностей дороги. Смягчая толчки удары от дорожных неровностей, подвеска обеспечивает возможность движения автомобиля без дискомфорта и быстрой утомляемости людей и повреждения грузов, повышает безопасность движения автомобиля, обеспечивая постоянный контакт колес с дорогой и исключая их отрыв нее.

Подвеска разделяет все массы автомобиля на две части — подрессоренные неподрессоренные. Подрессоренные — части, опирающиеся на подвеску: кузов и закрепленные на них механизмы. Неподрессоренные — части, опирающиеся на дорогу: мосты, колёса, тормозные механизмы.

Дополнительные материалы: на 4 листах прилагается описание каждой конструкции подвесок, приведенных на чертеже.

Чертежи в программе: Компас 3D V

Источник статьи: http://chertegrf.ru/chertezhi/agregaty-mashin/mosty-podveski/chertezh-obzora-konstruktsij-podvesok.html

Устройство подвески, как она работает и из чего состоит

Дорога, по которой водитель выбирает маршрут движения, не всегда бывает ровной и гладкой. Очень часто на ней могут присутствовать такое явление, как неровности покрытия — трещины в асфальте и даже кочки и ухабы. Не стоит забывать и про «лежачих полицейских». Этот негатив отрицательно сказывался бы на комфорте движения, если не существовала бы амортизационная система — подвеска автомобиля.

Назначение и устройство

Во время движения неровности дороги в виде колебаний передаются на кузов. Подвеска автомобиля предназначается для гашения или смягчения подобных колебаний. В ее прикладные функции входит обеспечение связи и соединения между кузовом и колесами. Именно детали подвески дают колесам возможность перемещаться независимо от кузова, обеспечивая изменение направления движения автомобиля. Наряду с колесами, она является обязательным элементом ходовой части автомобиля.

Подвеска автомобиля – это технически сложный агрегат, имеющий следующее строение:

  1. упругие элементы — металлические (пружины, рессоры, торсионы) и неметаллические (пневматические, гидропневматические, резиновые) детали, которые, в силу своей упругих характеристик, принимают нагрузку от неровностей дороги и распределяют ее на кузов автомобиля;
  2. гасящие устройства (амортизаторы) – агрегаты, имеющие гидравлическое, пневматическое или гидропневматическое строение и предназначенные для нивелирования колебаний кузова, полученных от упругого элемента;
  3. направляющие элементы – различные детали в виде рычагов (поперечных, продольных), обеспечивающих соединение подвески с кузовом и определяющих перемещение колес и кузова относительно друг друга;
  4. стабилизатор поперечной устойчивости — упругая металлическая штанга, соединяющая подвеску с кузовом и препятствующая увеличению крена автомобиля в процессе движения;
  5. опоры колеса – специальные поворотные кулаки (на передней оси), воспринимающие нагрузки, исходящие от колес, и распределяющие их на всю подвеску;
  6. элементы крепления деталей, узлов и агрегатов подвески – это средства соединения элементов подвески с кузовом и между собой: жесткие болтовые соединения; композитные сайлентблоки; шаровые шарниры (или шаровые опоры).

Принцип работы

Схема работы подвески автомобиля основывается на преобразовании энергии удара, возникающего от наезда колеса на неровность покрытия дороги, в перемещение упругих элементов (к примеру, пружин). В свою очередь, жесткость перемещения упругих элементов контролируется, сопровождается и смягчается действием гасящих устройств (например, амортизаторов). В результате, благодаря подвеске, сила удара, которая передается на кузов автомобиля, уменьшается. Этим и обеспечивается плавность хода. Лучший способ увидеть работу системы – это использовать видео, которое наглядно демонстрирует все элементы подвески автомобиля и их взаимодействие.
» alt=»»>
Автомобили обладают самыми различными по жесткости подвесками. Чем жестче подвеска, тем информативнее и эффективнее управление автомобилем. Однако при этом серьезно страдает комфорт. И, наоборот, мягкая подвеска устроена так, что обеспечивает удобство в эксплуатации и жертвует управляемостью (чего нельзя допустить). Именно поэтому производители автомобилей стремятся найти их наиболее оптимальный вариант – сочетание безопасности и комфорта.

Многообразие вариантов подвески

Устройство подвески автомобиля – это самостоятельное конструкционное решение производителя. Существует несколько типологий подвески автомобиля: их различает критерий, положенный в основу градации.

В зависимости от устройства направляющих элементов выделяются наиболее распространенные типы подвески: независимая, зависимая и полунезависимая.

Зависимый вариант не может существовать без одной детали — жесткой балки, входящей в состав моста автомобиля. При этом колеса в поперечной плоскости перемещаются параллельно. Простота и эффективность конструкции обеспечивает ее высокую надежность, не допуская развала колес. Именно поэтому зависимая подвеска активно применяется в грузовых автомобилях и на задней оси легковых.

Схема независимой подвески автомобиля предполагает автономное существование колес друг от друга. Это позволяет повысить амортизационные характеристики подвески и обеспечить большую плавность хода. Данный вариант активно применяется для организации как передней, так и задней подвески на легковых автомобилях.

Полунезависимый вариант состоит из жесткой балки, закрепленной на кузове с помощью торсионов. Данная схема обеспечивает относительную независимость подвески от кузова. Характерный ее представитель – переднеприводные модели ВАЗ.

Вторая типология подвесок основывается на конструкции гасящего устройства. Специалисты выделяют гидравлические (масляные), пневматические (газовые), гидропневматические (газо-масляные) устройства.

Определенным особняком стоит так называемая активная подвеска. Ее схема включает в себя вариативные возможности – изменение параметров подвески при помощи специализированной электронной системы управления в зависимости от условий движения автомобиля.

Наиболее распространенными изменяемыми параметрами являются:

  • степень демпфирования гасящего устройства (амортизаторного устройства);
  • степень жесткости упругого элемента (например, пружины);
  • степень жесткости стабилизатора поперечной устойчивости;
  • длина направляющих элементов (рычагов).

Активная подвеска представляет собой электронно-механическую систему, существенного увеличивающую стоимость автомобиля.

Основные виды независимой подвески

В современных легковых автомобилях в качестве амортизационной системы очень часто используется независимый вариант подвески. Это обусловлено хорошей управляемостью автомобиля (из-за небольшой массы) и отсутствием необходимости в тотальном контроле за траекторией его движения (как, например, в варианте с грузовым транспортом).
Специалисты выделяют следующие основные виды независимой подвески. (Кстати, фото позволит более наглядно проанализировать их отличия).

Подвеска на основе двойных поперечных рычагов

Строение данного вида подвески включает в себя два рычага, крепящиеся сайлентблоками к кузову, и соосно расположенные амортизатор и витую пружину.

Подвеска МакФерсон

Это производный (от предыдущего вида) и упрощенный вариант подвески, в которой верхний рычаг заменила амортизационная стойка. На сегодняшний момент МакФерсон – самая распространенная схема передней подвески легковых автомобилей.

Многорычажная подвеска

Еще один производный, усовершенствованный вариант подвески, в котором как бы искусственно два поперечных рычага были «разделены». Кроме того, современный вариант подвески очень часто состоит и из продольных рычагов. Кстати, многорычажная подвеска – это наиболее применяемая сегодня схема задней подвески легковых автомобилей.

Торсионная подвеска

Схема данного вида подвески основывается на специальной упругой детали (торсионе), который соединяет рычаг и кузов и работает на скручивание. Данный вид конструкции активно применяется при организации передней подвески некоторых внедорожников.

Регулировка передней подвески

Важным компонентом комфортного движения является правильная регулировка передней подвески. Это так называемые углы установки управляемых колес. В просторечии такое явление именуется «сход-развал».

Дело в том, что передние (управляемые) колеса устанавливаются не строго параллельно продольной оси кузова и не строго перпендикулярно поверхности дороги, а с некоторыми углами, обеспечивающими наклоны в горизонтальной и вертикальной плоскостях.

Правильно выставленный «сход-развал»:

  • во-первых, создает наименьшее сопротивление движению транспортного средства, а, следовательно, упрощает процесс управления автомобилем;
  • во-вторых, существенно уменьшает износ протектора шин; в-третьих, значительно снижает расход топлива.

Выполнение установки углов – это технически сложная процедура, требующая профессионального оборудования и навыков работы. Поэтому выполнять ее следует в специализированном учреждении – автосервисе или СТО. Вряд ли стоит пробовать делать это самому по видео или фото из Интернета, если нет опыта в подобных делах.

Неисправности и обслуживание подвески

Сразу же оговоримся: согласно российским правовым нормам, ни одна неисправность подвески не отнесена к «Перечню…» неисправностей, с которыми запрещается движение. И это спорный момент.

Представим, что амортизатор подвески (передней или задней) не работает. Такое явление означает, что проезд каждой неровности будет сопряжен с перспективой раскачки кузова и потерей управляемости автомобиля. А что можно сказать о вконец разболтавшейся и пришедшей в негодность шаровой опоре передней подвески? Результат неисправности детали — «вылетела шаровая» — грозит серьезным ДТП. Лопнувший упругий элемент подвески (чаще всего пружина) приводит к возникновению крена кузова и подчас абсолютной невозможности продолжать движение.

Описанные выше неисправности – это уже конечные, наиболее одиозные неисправности подвески автомобиля. Но, несмотря на их крайне негативное влияние на безопасность движения, эксплуатация транспортного средства с такими проблемами не запрещается.

Большую роль в обслуживании подвески играет контроль за состоянием автомобиля в процессе движения. Скрипы, шумы и стуки в подвеске должны насторожить и убедить водителя в необходимости сервисного обслуживания. А длительная эксплуатация автомобиля вынудит его применить радикальный метод – «поменять подвеску по кругу», то есть заменить практически все детали и передней, и задней подвески.

Источник статьи: http://znanieavto.ru/hodovaya/podveska-avtomobilya-elementy-sxema-i-raznovidnosti.html

Проектирование элементов подвески спортивного автомобиля Subaru Impreza WRX GH в среде T-FLEX CAD

Подпишитесь на автора

Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

Отписаться от уведомлений вы всегда сможете в профиле автора.

Проектирование элементов подвески спортивного автомобиля Subaru Impreza WRX GH в среде T-FLEX CAD

Публикуем интересный материал о проектировании элементов подвески авто, автор Владимир Вагранский.

В статье рассмотрено проектирование и производство элементов подвески автомобиля Subaru Impreza WRX GH c помощью T-FLEX CAD, а также подготовка и производства с использованием модулей T-FLEX Раскрой и T-FLEX ЧПУ.

На данный момент существует много технических видов спорта, один из них – автомобильный. Для того чтобы подготовить автомобиль к участию в различных видах соревнований, требуется серьезная инженерная проработка практически каждого узла. Зачастую детали, которые установлены на автомобиле заводом-изготовителем, не удовлетворяют требованиям, предъявляемым к автомобилю на гоночном треке. В этой статье я рассмотрю приёмы, применяемые при разработке задней подвески спортивного автомобиля для дисциплины «Дрифт». Для данного вида автоспорта характерен специфический набор геометрических параметров положения элементов задней подвески (далее рычагов), который позволяет выставить угол развала задних колес равным нулю, чтобы обеспечить максимальную площадь контакта покрышки с полотном (рис. 1). Также необходимо уменьшить клиренс автомобиля для смещения его центра тяжести. Регулировок подвески, предусмотренных заводом-изготовителем, не хватает, чтобы удовлетворить все вышеперечисленные требования. В связи с этим появляется необходимость в разработке и изготовлении набора элементов задней подвески с большими ходами регулировки. Помимо всего прочего, появляется возможность увеличить прочность и уменьшить массу рычагов, что значительно улучшает характеристики автомобиля. Рис. 1. Набор типов геометрических параметров положения элементов задней подвески

Автомобиль, для которого будут разрабатываться рычаги, – Subaru Impreza WRX GH. На схеме на рис. 2 представлена конструкция подвески автомобиля. Основой задней подвески является подрамник, к которому крепятся 4 пары рычагов.

Первая задача для разработки – получение опорной геометрии подрамника Поскольку получить оригинальные 3D модели от производителя невозможно, то остаётся несколько вариантов:1. Ручной обмер подрамника и его 3D моделирование2. 3D сканирование подрамника3. Получение модели подрамника с помощью КИМСамым быстрым и простым методом является 3D сканирование – поэтому я его и выбрал для реализации текущего этапа. Данный метод не является самым точным, но т.к. конструкция подразумевает полностью регулируемые элементы, то все погрешности измерения и изготовления будут компенсированы при сборке и настройке. Результатом 3D сканирования является STL файл, представляющий собой набор треугольников и их нормалей (рис. 3). Чем меньше размер треугольников, тем выше точность полученной 3D геометрии. Далее сетка открывается с помощью T-FLEX CAD, в котором можно провести анализ полученного 3D скана, наложить текстуры (рис. 4), измерить опорные точки и сравнить их с исходной деталью. Расхождение с реальным подрамником оказалось в пределах 0.7мм. В дальнейшем полученный 3D скан будет использоваться как опорная геометрия для 3D моделирования рычагов и их сборки в подрамнике. Рис. 3. Сканированная сетка Рис. 4. Скан с наложенной текстурой. Фотореализм в T-FLEX CAD

Вторая задача – получение опорной геометрии заднего кулакаГеометрия была получена с помощью ручных средств измерения и 3D моделирования в T-FLEX CAD, т.к. нужна высокая точность для последующего моделирования переходных кронштейнов для тормозной системы и колесных ступиц (рис. 5).После получения опорной геометрии кулака его можно разместить в 3D сцене T-FLEX CAD. Геометрия положения колеса в пространстве определяется кулаком, который устанавливается в нужное положение относительно подрамника, а именно с нулевым углом развала (рис.6).

Рис. 5. Опорная геометрия кулака в T-FLEX CAD

В результате проводится замер необходимой длины всех проектируемых рычагов. Погрешности в измерениях снова компенсируются закладываемыми возможностями регулировки длин рычагов. Для данной компоновки задней подвески необходимы 3 регулируемых рычага из 4. Верхний треугольный рычаг остаётся заводским, т.к. изменение ширины колеи автомобиля не планируется. Соответственно, в разработку идут: продольные и поперечные рычаги, реактивные тяги.

Рис. 6. Размещение кулака относительно подрамника

Для комфортной езды по неровным дорогам завод-изготовитель предусматривает шарнирные соединения, представляющими собой сайлентблоки. В спортивных подвесках большую роль играет жёсткость конструкции, поэтому вместо сайлентблоков применяются жёсткие шарнирные подшипники (ШС). Но в некоторых случаях можно использовать заводские шарниры, чтобы сохранить мягкость в одном из направлений. Поперечный рычагПри разработке поперечного рычага учитывается расстояние между точками крепления к кулаку и подрамнику. Расположение точек крепления стойки стабилизатора поперечной устойчивости берётся с заводского рычага, также добавляются дополнительные точки крепления для тонких регулировок подвески (рис. 7).

Рис. 7. Точки крепления продольного рычага

Конструкция рычага представляет собой гнутое основание из листового металла, сваренное со связывающими пластинами. Для сборки предусмотрено соединение типа шип-паз. Использование листового металла позволяет значительно упростить конструкцию для единичного или мелкосерийного изготовления. Для решения этой задачи использовался модуль листового металла T-FLEX CAD. Также удалось получить конструкцию на 25% легче и жёстче по сравнению с заводскими характеристиками. Регулировка длины рычага осуществляется через промежуточную втулку между телом рычага и шарнирным наконечником. Это даёт возможность регулировать рычаг непосредственно на автомобиле.Продольный рычаг и реактивная тягаРазработка реактивной тяги и продольного рычага осуществляется аналогично поперечному рычагу. Их конструкция очень проста. Регулировка выполняется вращением основной втулки, в которой нарезана резьба с разными направлениями. Вращение по часовой стрелке увеличивает длину, против часовой – уменьшает. Гайки фиксируют положение резьбы. Данная схема также позволяет регулировать длину без снятия их с автомобиля.Рис. 8. Продольный рычаг и реактивная тяга

Следующем этапом разработки является 3D сборка узла подвески (рис. 9). Тормозные суппорты, стойки амортизаторов и тормозные диски являются покупными изделиями. После формирования сборочной единицы проходит анализ конструкции на возможные пересечения и правильность выбранных размеров.

Рис. 9. Подвеска в сборе. Фотореализм в T-FLEX CAD

После анализа всех элементов в сборе можно приступить к изготовлению опытного образца. Для этого необходимо подготовить технологические модели и чертежи. Рассмотрим, например, технологическую подготовку поперечного рычага. Так как основой являются детали из листового металла, то их целесообразнее изготовить на оборудовании для раскроя с последующей гибкой (рис. 10). Такую задачу с лёгкостью решает T-FLEX CAD!

Рис. 10. Конструктивные элементы рычага

Функциональные возможности системы позволяют оформить чертежи, эскизы и подготовить технологические модели для дальнейшего изготовления. Непосредственно для подготовки и самого изготовления подобного типа деталей используются модули T-FLEX Раскрой и T-FLEX ЧПУ. Для того чтобы решить задачу оптимизации раскроя заготовок, необходимо выгрузить контуры деталей в модуль T-FLEX Раскрой. Данные о наименовании и обозначении деталей передаются автоматически — остаётся только задать параметры кроя и количество деталей.

Рис. 11. Схема раскроя в T-FLEX Раскрой

Далее полученная схема раскроя (рис. 11) передается в систему T-FLEX ЧПУ, с помощью которой можно сгенерировать управляющую программу для раскройного оборудования. Система позволяет получать программы для лазерного, фрезерного, электроэрозионного оборудования и т.д. (рис. 12).

Рис. 12. Имитатор обработки T-FLEX ЧПУ

После получения плоских заготовок их необходимо передать на гибку — для этого оформляется чертёж листовой детали и её развёртки с размерами и радиусами сгибов (рис.13).

Рис. 13. 3D модели и эскиз для гибки

Конструкция шип-паз позволяет собирать изделия с помощью универсальной оснастки без вспомогательных кондукторов (рис. 14). Это очень сильно влияет на время и стоимость изготовления опытных образцов.

Рис. 14. Процесс сварки рычага

Последним этапом детали передаются на окраску, после чего устанавливаются на автомобиль.

Рис. 15. Готовый комплект рычагов

О развитии проекта автор обещал написать в новом материале.

Источник статьи: http://3dtoday.ru/blogs/topsystems/proektirovanie-elementov-podveski-sportivnogo-avtomobilya-subaru-impreza-wrx-gh-v-srede-t-flex-cad

Оцените статью