Использование функции омметра в автодиагностике — проверка компонентов авометром или мультиметром
Примечание.
Данная статья универсальна и применима к любой марке автомобиля.
Пожалуй, в практике ремонтника любого изделия, причастного к подключению электрического тока, наибольшим по количеству будут измерения сопротивления и проводимости. И в работе автомобильного мастера этот процесс занимает ведущее место в работе. Для того чтобы начать проводить измерения и получать правильные результаты, следует напомнить некоторые правила электротехники. Везде в схемотехнике автомобиля (как и в других областях техники) мы постоянно сталкиваемся с последовательным и параллельным подключением элементов в токоведущей цепи.
Последовательное подключение резисторов — один конец резистора подключен к источнику питания, а к другому его концу подключен вывод следующего резистора, и так несколько один за другим. Вывод последнего тоже подключен к выводу источника питания с другой полярностью (фото 1 ).
Что же произойдет в случае такого подключения? Сопротивление всех резисторов суммируется, т.е. R1+R 2 +R 3 + Rn = Rобщ . Такую схему мы применяем, когда необходимо получить определенную величину сопротивления, состоящую из нескольких деталей.
Пример: провода высокого напряжения в автомобиле могут состоять из нескольких компонентов — наконечник свечи зажигания может иметь встроенный резистор, сам провод имеет сопротивление токоведущей жилы, и в свечу встроен резистор. Это сделано для уменьшения радиопомех при работе системы зажигания. Во время проверки работоспособности проводов нам следует об этом помнить.
Также при проверке сопротивления проводов высокого напряжения необходимо иметь ввиду, что существует разное удельное сопротивление предлагаемых проводов. К примеру, среди типовых значений, применяемых в разных автомобилях, можно чаще всего встретить такие: R=0,1 Ом/1 погонный метр длины, 1 кОм/1 погонный метр длины и 16 кОм/1 погонный метр длины. Необходимо учитывать, что на одном автомобиле на всех цилиндрах могут стоять только провода одной группы сопротивления.
Параллельное подключение резисторов: оба вывода одного и второго (или нескольких) резисторов соединяются между собой, и в точки соединения подается напряжение от источника питания (фото 2).
В этом случае, при условии равных сопротивлений каждого из резисторов, мы получим: R общ = R/n, где n — количество равных сопротивлений. С какой целью применяется? Чтобы увеличить возможность прохождения большей силы тока в цепи, т.е. для увеличения мощности. В автомобиле такое соединение применяется в конструкции втягивающего реле стартера. Заметьте все, что будет сказано дальше, также будет привязано к применению в автомобиле.
Измерение сопротивлений в автомобильном деле, пожалуй, самое популярное действие, выполняемое диагностом. В системе зажигания практически все компоненты проверяются на наличие проводимости. Составляющие системы приготовления топливовоздушной смеси имеют в составе токопроводящий элемент: катушка инжектора, обмотка регулятора х.х., датчики температуры, датчик положения дроссельной заслонки. Каждый из них мы постараемся правильно проверить.
Следующий компонент в автомобильных системах — конденсатор — тоже нуждается в периодической проверке. По конструкции эта деталь состоит из двух токопроводящих пластин, между которыми расположен диэлектрик. Для постоянного тока — он непроводящий, и при проверке его омметром должен показывать сопротивление, близкое к бесконечности. Правда, имеются конденсаторы большой емкости, и если при проверке щупы прибора подключить к его выводам, стрелка покажет резкое отклонение и вернется обратно. Чем больше емкость конденсатора, тем сильнее отреагирует стрелка. У некоторых авометров есть встроенная функция измерения емкости конденсаторов (фото 3).
Немногие механики знают, что в контактной системе зажигания от конденсатора зависит качество искры. Нередко после продолжительной работы у этого элемента может ослабнуть прочность диэлектрика, при этом энергия искры понизится в два раза. Последует увеличенный расход топлива и очень плохой утренний запуск. При покупке нового конденсатора не всегда есть полная уверенность в его качестве, поэтому его проверять следует перед установкой в автомобиль.
Теперь подошла очередь проверки полупроводниковых компонентов. Мы не будем глубоко вникать в процессы, происходящие внутри каждой детали, достаточно правильно научиться обнаруживать неисправный компонент.
Итак. При проверке полупроводникового диода нам необходимо определить, на котором из выводов авометра находится положительный потенциал внутреннего источника питания. Можно воспользоваться вторым авометром в режиме измерения напряжения, и по отклонению стрелки, а также маркировке его выводов определим, где у нашего прибора исходит положительный потенциал. Если у нас имеется в распоряжении гарантировано исправный диод с нанесенной на корпусе маркировкой, мы с его помощью тоже можем точно узнать полярность нашего прибора. Для того чтобы проверить исправность диода, необходимо к выводу «анод» приложить «плюс» источника прибора. А к выводу «катод», соответственно, «минус» прибора (фото 4).
Стрелка должна показать заметное отклонение. А в противоположном направлении сопротивление должно быть близким к бесконечности. Запоминаем: в словах «анод» и «плюс», а также «катод» и «минус» — одинаковое количество букв. Также диод включается и в прямом направлении проводимости. Во время ремонта или в процессе диагностики генератора переменного тока проверка диодов необходима всегда.
Проверка полупроводниковых транзисторов мало чем отличается от проверки диода. По конструкции деталь представляет собой полупроводниковый компонент с тремя рабочими выводами. Каждый из выводов внутри корпуса соединен с активной областью на кристалле и имеют названия: база, коллектор и эмиттер.
Еще необходимо отметить, что бывают биполярные транзисторы структуры P-N-P и N-P-N . В детали мы вникать не будем (это необходимо разработчикам), наша задача правильно оценить работоспособность компонента. Для каждого конструктивного исполнения корпуса существует определенное расположение выводов, на корпусе называемое «цоколевка транзистора». Сведения о расположении выводов обычно находятся в специализированной справочной литературе. Но, понимая суть дела, мы можем сделать несколько измерений авометром, и узнать, где какой вывод у биполярного транзистора и структуру его проводимости. А суть изделия такова: для проведения проверки представим себе транзистор как два диода, соединенные между собой либо анодами. Тогда мы имеем макет N-P-N структуры. А, соединив вместе катоды, получим Р-N-P структуру. При этом точка соединения выводов диода имитирует вывод база транзистора. Если подключить прибор «плюсом» к базе транзистора N-P-N структуры, то стрелка отклонится на значительный угол при подключении «минус» на каждый из катодов (коллектор и эмиттер). Это будет свидетельствовать об исправном компоненте. В тоже время при смене полярности стрелка отклониться не должна. Для структуры P-N-P проводимости все должно произойти с точностью до «наоборот». Неисправность транзистора имеет обычно вид полного обрыва или короткого замыкания (фото 5).
По аналогии «прозвонки» макета биполярного транзистора, «прозваниваем» поочередно между выводами, изменяя полярность подключения прибора. Достаточно быстро обнаружим и структуру, и вывод базы транзистора. Между выводами коллектор и эмиттер у исправного транзистора должен появиться показатель, близкий к значению бесконечности. Определить, который из выводов коллектор, можно по конструкции корпуса обычно он выполнен заодно с корпусом или пластиной теплоотвода. Если устройство другое, тогда только включение в схему даст возможность определить этот вывод. Поскольку мы при ремонте автомобиля пытаемся выявить неисправный транзистор, то проверять его будем включенным в схему. А вот в этом деле уже есть некоторые особенности, с ними мы будем подробно знакомиться дальше по ходу изучения возможностей Авометра.
Сергей Григорьев
АвтоМастер
Видео
Источник статьи: http://lada-niva.ru/niva/ommetr.html
Омметр
Приборы для измерения сопротивления
Стоит открыть любой учебник по электротехнике и сразу выясняется, что практически все электротехнические величины названы в честь великих физиков прошлого: Вольт, Ампер, Генри, Ом, Фарада, Тесла, Герц. Конечно, обидно, что российских физиков в этом списке нет.
Немецкий физик Георг Ом первый ввёл понятие сопротивления. В его честь единицу измерения сопротивления стали называть «Ом». Эта величина изображается греческой буквой омега – Ω.
Раньше радиоэлементы так и назывались «сопротивление» и лишь много позже в обиход вошло слово резистор. До введения маркировки с помощью цветных полосок все необходимые данные наносились непосредственно на корпус резистора. В технической литературе можно встретить такие обозначения: килоом и мегаом, что означает соответственно тысяча ом и миллион ом. На принципиальных схемах рядом с обозначением резистора можно встерить надписи: 4К7 – четыре и семь килоома (4,7 кОм) или 1М2 – один и два мегаома (1,2 МОм). На зарубежных схемах «Ом» пишется как «Ohm».
Для измерения сопротивлений используется прибор, который называется Омметр. Приборы, измеряющие только сопротивление, в радиолюбительской практике обычно не используются. Такие высокоточные приборы применяются на заводах выпускающих резисторы для определения номинала с определённой погрешностью или в научно-исследовательских лабораториях.
Зато все знают такое понятие как тестер или мультиметр. Такие приборы объединяют в себе вольтметр, амперметр и омметр + ещё функционал дополняется возможностью проверки диодов или же измерения температуры. Всё зависит от стоимости и исполнения прибора. Мультиметры бывают стрелочные и цифровые. Каждый из них имеет свои особенности, достоинства и недостатки.
На принципиальных схемах омметр обозначается следующим условным графическим обозначением.
Стоит понимать, что так обозначается прибор целиком. В реальности же омметр также собран из достаточно большого количества радиодеталей, и его принципиальная схема включает в себя немалое количество элементов. Данное условное обозначение применяется в основном для того, чтобы показать, на каком участке схемы и каким прибором необходимо проводить измерение. Вот пример.
Здесь на схеме показано, как нужно замерять сопротивление звуковой катушки динамика. Из схемы видно, что кроме омметра (измерительного прибора) и самого динамика ничего не нужно.
Как уже говорилось, омметр, как правило, входит в состав мультиметра. Исключение составляют только узкоспециализированные и высокоточные приборы для измерения сопротивления. Они стоят довольно дорого и их могут позволить себе только крупные фирмы и исследовательские лаборатории.
Омметр в составе тестера-мультиметра используется как вспомогательный. Прежде всего, им можно проверять исправность транзисторов и диодов, а при небольшом навыке стабилитронов и тиристоров. Омметр незаменим при поиске самых главных неисправностей электронных схем:
Короткое замыкание, где его быть не должно.
Обрыв там, где должна быть замкнутая цепь.
Конечно, омметром проверяются обмотки трансформаторов, электродвигателей. Несложно проверить электролитические конденсаторы большой ёмкости, но только на исправность. На утечку проверить электролит не удастся.
О стрелочных измерительных приборах…
Стрелочные приборы в настоящее время применяются редко ввиду большой погрешности, ограниченной функциональности и необходимости расчёта результатов показаний. Кроме того, стрелочные приборы время от времени требуют калибровки.
Стоит отметить, что стрелочные омметры устроены проще своих цифровых собратьев. Ранее, ещё до широкого распространения цифровых мультиметров, в ходу у радиолюбителей были так называемые авометры. Авометр – это стрелочный многофункциональный прибор, который в одном корпусе объединяет три прибора для измерения основных электрических величин: амперметр – измеряет силу тока, вольтметр – измеряет напряжение и омметр – измеряет сопротивление. Как видим, название авометра происходит от названий тех приборов, которые входят в его состав.
Стоит отметить, что для стрелочных приборов, таких как амперметр и вольтметр не нужен источник питания (батарейка), а омметр обязательно требует наличие батареи питания.
Дело тут в том, что стрелочные приборы амперметр и вольтметр измеряют такие величины, как ток и напряжение на рабочих, включенных приборах. И именно поэтому им не нужен свой собственный источник питания, так как энергию для отклонения указательной стрелки они получают от участка схемы, на котором проводится замер электрических величин.
С омметром другая история. Омметр замеряет сопротивление. Но замерить сопротивление участка цепи, которое находиться под рабочим напряжением нельзя. Можно лишь замерить ток и напряжение на участке цепи и с помощью закона ома вычислить сопротивление этого участка. Думаю, с этим понятно.
Поэтому омметр используют лишь в тех случаях, когда нужно измерить сопротивление участка цепи или радиодетали при выключенном рабочем электропитании. А для того, чтобы определить сопротивление какого-либо участка цепи или радиодетали, нужно пропустить через него пусть и небольшой ток, которого достаточно для отклонения стрелки стрелочного прибора. Именно поэтому стрелочные вольтметры и амперметры могут работать и без батареи питания, но вот даже стрелочный омметр без батарейки работать не будет.
К недостаткам стрелочных приборов можно отнести достаточно большие габариты, необходимости калибровки, трудоёмкость при считывании показаний. Но, несмотря на это, и у стрелочных приборов есть свои преимущества.
Преимущество стрелочных приборов.
Что можно сказать в пользу стрелочных измерительных приборов? А вот что. Как уже говорилось, стрелочный амперметр и вольтметр не нуждаются в источнике питания. Об этом весомом преимуществе вспоминаешь регулярно, когда в цифровом мультиметре наглухо садится батарейка
Современный мультиметр в обязательном порядке требует наличия батареи питания. Она нужна для того, чтобы питать микросхемы контроллера и дисплея, на котором отображаются результаты измерений.
В пользу стрелочных приборов можно отнести и то, что они имеют достаточно простое устройство. Это напрямую сказывается на ремонтопригодности таких приборов. Восстановить работу стрелочного прибора порой не так уж и сложно и дорого, в то время как восстановить современный цифровой мультиметр иногда просто невозможно.
Взглянем на внутренности цифрового мультиметра.
Прибор питается от батарейки типа «Крона» напряжением 9 вольт. Её, предохранитель и контроллер прибора видно при снятой задней стенке. Также видны контактные участки многопозиционного переключателя и другие элементы схемы.
Рассмотрим основные практические измерения с помощью популярного прибора DT-830B. Прибор представляет собой компактный универсальный мультиметр, позволяющий измерять постоянное и переменное напряжение, силу тока и сопротивление. Кроме того на панели прибора есть специальный разъём для проверки коэффициента усиления h21Э (hFE) маломощных транзисторов.
Практическая работа с мультиметром DT-830B.
Прежде чем приступать к работе следует твёрдо запомнить одно правило. Независимо от того, что вы собираетесь мерить: ток, напряжение или сопротивление всегда необходимо начинать с максимального предела и поэтапно переходить на более низкие пределы измерения.
Пределы измерения омметра выглядят вот так.
На панели мультиметра DT-830B они ограничены зелёной линией. Прибор имеет 5 пределов измерений:
200 — на этом пределе измеряются сопротивления величиной до 200 Ом;
2000 — на этом пределе измеряются сопротивления до 2 килоом (2 кОм = 2000 Ом);
20k — на этом пределе измеряются сопротивления, величина которых не превышает 20 килоом (20 кОм = 20 000 Ом);
200k — предел для измерения сопротивлений до 200 килоом (200 кОм = 200 000 Ом);
Ну, и наконец, 2000k — предел для измерения сопротивлений до 2 мегаом.
Если вы запутались в килоомах и мегаомах, и не знаете как определить, сколько это будет в омах, то добро пожаловать сюда. Там подробно рассказано о сокращённой записи численных величин.
Когда в режиме измерения сопротивления оба щупа разомкнуты, на индикаторе в старшем разряде высвечивается цифра 1, что означает бесконечно большое сопротивление.
А при замкнутых накоротко щупах на индикаторе высвечиваются три нуля. Это значить, что измерительная цепь коротко замкнута. Иногда самая правая цифра может быть 1 или 2 (на дисплее типа вот так 001 или 002). Это величина погрешности самого прибора. Она настолько незначительна, что ей можно пренебречь.
У профессиональных мультиметров, например В-38, которые используются в лабораториях, имеется потенциометр калибровки, с помощью которого можно установить > 0 of your page —>
Источник статьи: http://go-radio.ru/ommetr.html