Газопоршневые двигатели для автомобиля

Газопоршневые двигатели – конструкция и принцип работы

Газопоршневый двигатель – это двигатель внутреннего сгорания с системой внешнего образования топливно-воздушной смеси и искровым зажиганием. В качестве топлива использует природный магистральный газ и др. виды газового топлива, что обеспечивает экономичность, высокий ресурс работы и минимальный уровень шума. В данной статье мы рассмотрим, что представляет собой газопоршневый двигатель, принцип работы и его особенности.

Основные элементы и принцип работы газопоршневого двигателя

Как и у любого ДВС, у газопоршневого двигателя принцип действия основан на сгорании топливовоздушной смеси и поступательном движении поршней за счет энергии расширяющихся газов. С помощью кривошипно-шатунного механизма поступательное движение поршней преобразуется во вращательный выходного вала двигателя.В схеме подачи газа в газопоршневых двигателях основную роль играет газораспределительный механизм, подача газа осуществляется из магистрали или баллонного оборудования.

Чаще всего данный вид двигателей применяется в качестве основного элемента электрогенератора. Так, современные газопоршневые электростанции, характеристики потребления топлива которых делают их наиболее выгодными из всех решений автономного энергообеспечения. Дополнительным преимуществом является возможность выработки тепла или холода для хозяйственных нужд – когенерации и тригенерации. Современный газопоршневой двигатель, принцип работы которого позволяет обеспечить и одновременную тригенерацию, делает оптимальным его применение в приводе холодильной установки. Также применяются они в насосном оборудовании, морском судостроении и др. сферах деятельности.

Читайте также:  Стартер для автомобилей ваз 1111 ока

Особенности газопоршневого двигателя

Наибольшие значения мощности газопоршневых двигателей достигают десятков мегаватт, что достаточно для обеспечения работы мощного оборудования и автономного энергообеспечения производственных и строительных объектов. Важным преимуществом является высокий ресурс работы, достигающий 250 тысяч часов при 80-100 тыс. часов межремонтного интервала (между капитальными ремонтами).

Подача газа в газопоршневых двигателях может быть баллонной или магистральной, а в качестве топлива, помимо метана, применяется:

  • пропан;
  • бутан;
  • коксовый и другие сопутствующие промышленные газы;
  • древесный газ;
  • газы нефтяной промышленности и многие другие виды.

При этом схема подачи газа в газопоршневых двигателях не требует наличия дожимного компрессора благодаря малому потребному давлению. Благодаря большому выбору вариантов можно гибко использовать оборудование на различных объектах, оперативно адаптировать систему к изменению технических или экономических условий. Перенастройка системы подачи топлива занимает минимум времени, газопоршневый двигатель можно свободно настроить на эксплуатацию на попутном газе, биогазе и др. топливе.

К основным особенностям газопоршневых двигателей можно отнести:

  • Небольшую зависимость КПД от окружающей температуры.
  • Незначительные колебания КПД при снижении нагрузки на 50% и, соответственно, эффективное использование двигателя при любых нагрузках.
  • Малые затраты на эксплуатацию.
  • Неограниченное количество запусков мотора.
  • Возможность параллельного подключения нескольких двигателей и, соответственно, возможность значительного повышения и рационального использования мощности системы.

С каждым годом газопоршневые двигатели получают всё большее применение в различных сферах, в т. ч. в качестве основного элемента газоэлектростанций для коттеджных поселков. Их экономичность и эксплуатационные обеспечивают им солидные преимущества в сравнении с другими вариантами автономного, резервного или аварийного электроснабжения различных объектов.

Источник статьи: http://mitsubishi-engine.ru/articles/princip-raboty-gazoporshnevogo-dvigatelja

Газовые двигатели ЯМЗ: вектор газа

В трудах древнегреческих философов встречается парадоксальная дилемма: что первично — яйцо или курица? Аналогичная ситуация возникла в России с применением компримированного (сжатого) природного газа (КПГ) как топлива для автомобиля. С одной стороны, нужны двигатели, работающие на метане, и транспортные средства, адаптированные к таким моторам. Но кто же будет покупать газобаллонные автомобили, если сеть заправок по-прежнему жидкая? С другой стороны, Газпрому нет резона строить и содержать АГНКС в ожидании потенциальных клиентов. Аристотель совершенно справедливо считал, что птица и яйцо появились одновременно…

Конкурентное предложение

В России для грузовиков средней грузоподъемности и большинства автобусов самый востребованный диапазон мощности двигателей — от 150 до 300 л.с. Это касается и газовых моторов. После того как на яросла­вский конвейер поставили четырехцилиндровый ЯМЗ‑534 объемом 4,43 литра и «шестерку» ЯМЗ‑536 объемом 6,65 литра, появилась возможность конвертировать их под сжатый природный газ.

Расшифровка аббревиатуры CNG — сompressed natural gas (сжатый природный газ). Моторы ЯМЗ‑534 CNG и ЯМЗ‑536 CNG существуют в нескольких модификациях — как по настройкам мощности, так и по назначению. У «четверки» диапазон мощности — от 150 до 170 л.с. при крутящем моменте от 493 до 590 Н·м (при 1200–1600 об/мин). У «шестерок» три версии: мощностью 258, 285 и 312 л.с.

Между тем планируется выпуск «шестерки» увеличенного до 7 литров рабочего объема и мощностью 330–370 л.с. При том же диаметре поршня (105 мм) его ход будет увеличен с 128 до 136 мм. На основе этого дизеля в перспективе будут создавать и более мощную газовую версию — под метан.

В России основными заказчиками дизельной «четверки» являются Горьковский автозавод и Павловский автобусный, а «шестерки» — Ликинский автобусный завод, Урал и МАЗ. Как ожидается, газовые двигатели должны хорошо пойти на экспорт — они отвечают нормам Евро‑5. В сравнении с аналогичными дизелями иностранных производителей и их газовыми версиями, ЯМЗ‑530 дешевле на 20–25% при сопоставимой мощности и экономичности. Заявленный ресурс дизельных «четверок» — не менее 700 тысяч километров, «шестерок» — 900 тысяч.

Отто против Дизеля

Газовый мотор ЯМЗ‑530 CNG на 90% унифицирован с дизельным, но переведен на цикл Отто. У него есть свечи, катушки зажигания и даже дроссельная заслонка. Степень сжатия уменьшили до 12 единиц — для этого пришлось изменить поршни. Ведь камера сгорания находится в днище поршня, а не в головке цилиндров. Поскольку у метана или пропан-бутана октановое число выше 100, требуется более высокая степень сжатия, нежели под 98‑й бензин.

Свечи зажигания вкручивают через нержавеющую резьбовую втулку-проставку на место установки форсунок у дизеля. А так как форсунки у моторов ЯМЗ‑530 находятся под клапанной крышкой, то для замены свечей эту крышку надо снять. При такой трудоемкости операции абы какие свечи сюда не поставишь: применяют жаропрочные свечи Bosch с платиноиридиевыми электродами — их хватает с запасом на 30 тысяч километров.

Высоковольтные провода к свечам подведены по сверлению в головке для топливных трубок. А электронное управление зажиганием и подача газа в двигатель схожи с современными системами обычного бензинового мотора. И, что особенно важно в России, газовое оборудование жизнеспособно при морозах до 40 градусов!

А что с заправками?

По разным сведениям, на конец 2016 года в Российской Федерации функционировало от 237 до 280 АГНКС. Из них около 228 газозаправочных станций принадлежит Газпрому, остальные — сторонним организациям. Если сравнивать с обычными АЗС, то АГНКС у нас в 100 раз меньше, причем распределены они очень неравномерно. Сейчас Газпром интенсивно строит газовые заправки: в октябре 2016 года открыли 14 новых АГНКС в шести федеральных округах, а к концу 2018 года планируется расширить сеть до 470 станций. Кроме того, газификацией коммерческого автотранспорта занялась Роснефть: в планах значится строительство 1000 АГНКС, на которое выделяется до 60 миллиардов рублей! Но сроки — до 2023 года.

Проблему сети заправок помогут решить компактные контейнерные станции — стационарные или передвижные, импортные или российского производства. Стационарные заправки производит специализированное подразделение холдинга «Русские машины», куда входит и «Группа ГАЗ», и фирма РМ-КПГ. В 2015 году РМ-КПГ ввела в эксплуатацию в Нижнем Новгороде газозаправочный модуль для обслуживания технологического автопарка Горьковского автозавода, а также муниципальных газомоторных автобусов. Модуль смонтирован в обычном 40‑футовом контейнере, который можно установить на любой АЗС и подключить к магистральной газовой трубе. Такие АГНКС уже работают в Кургане, обеспечивая, в частности, потребности завода КАвЗ.

Остается надеяться, что такой сценарий развития газомоторной темы в России устроил бы не только Аристотеля, но и современных российских автомобилистов.

Источник статьи: http://www.zr.ru/content/articles/905423-vektor-gaza/

Дизель на метане принцип работы

Отличия газодизельных ДВС от бензиновых, работающих на компримированном газе

В результате исследований по использованию природного газа в качестве топлива в дизелях установлено следующее:

  • природный газ (метан) в отличие от дизельного топлива обладает малым цетановым числом (10 ед.) и, следовательно, плохой воспламеняемостью;
  • осуществить воспламенение газа в дизеле со степенью сжатия менее 25 без постороннего источника зажигания смеси невозможно, так как температура воспламенения метана (680 °С) существенно выше температуры воспламенения дизельного топлива (280 °С);
  • для природного газа наиболее приемлемым процессом организации воспламенения рабочей смеси является газодизельный, при котором газовоздушная смесь воспламеняется от небольшой запальной дозы дизельного топлива, впрыскиваемого в камеру сгорания в конце такта сжатия;
  • газодизельный процесс является наиболее экономически оправданным, так как при этом не требуется переделка двигателя и его систем, а только дооборудование двигателя ГСП и перерегулировка топливной аппаратуры, которая выполняется автоматически с помощью электронных устройств;
  • при прекращении подачи газа газодизель может полноценно работать как обычный дизель. В отличие от бензиновых ГБА газодизельный процесс ДВС не только не ухудшает технико-экономические показатели работы автомобиля, но даже несколько увеличивает КПД двигателя (на 1 …2 %) по сравнению с дизельным циклом;
  • эксплутационный расход дизельного топлива при работе в газодизельном режиме снижается на 75…80 %.

Рис. Газовая система питания газодизельных и бензиновых двигателей внутреннего сгорания:1 — баллоны высокого давления; 2 — межбаллонные трубопроводы с компенсационными витками; 3 — манометр; 4 — расходный вентиль; 5 — межсекционная крестовина; 6 — наполнительный вентиль; 7 — магистральный вентиль; 8 — подогреватель газа; 9 — редуктор высокого давления; 10 — датчик падения давления газа в магистрали; 11 — предохранительный клапан; 12 — фильтр с электромагнитным клапаном; 13 — редуктор низкого давления; 14 — газовый смеситель; 15 — карбюратор-смеситель; 16 — трубка подачи газа системы холостою хода; 17— электромагнитный клапан пусковой системы; 18 — кнопочный переключатель; 19 — фильтр бензиновой системы питания с электромагнитным клапаном; 20 — дозатор газа; 21 — трехходовой электромагнитный клапан; 22 — смеситель газа; 23 — сопло Вентури; 24 — датчик блокировки; 25 — механизм установки запальной дозы; 26 — подвижный упор; 27 — телескопическая тяга; 28 — тяга регулятора ТНВД; 29 — датчик частоты вращения; 30 — зубчатый венец датчика; 31 — педаль акселератора

Конструкция газодизеля по сравнению с карбюраторной газобаллонной системой питания имеет некоторые отличия и дополнительно включает в себе следующие элементы: дозатор газа 20, трехходовой электромагнитный клапан 21, смеситель 22 с диффузором типа сопла Вентури 23, датчик блокировки 24, механизм установки запальной дозы 25, подвижный упор 26, телескопическую тягу 27 управления регулятора 28 ТНВД, индуктивный датчик 29 частоты вращения ДВС, зубчатый венец 30 коленчатого вала ДВС, рычаг-педаль 31 привода подачи топлива.

Газодизельный процесс осуществляется следующим образом. Газ после прохождения редуктора низкого давления 13 попадает в дозатор-смеситель, выполненный в виде самостоятельных блоков дозатора 20 и смесителя 22.

Дозатор газа, представляющий собой дроссельную заслонку, изготовлен в едином корпусе с диафрагменным механизмом ограничения подачи газа. Управление приводом дроссельной заслонки осуществляется с помощью педали 31 и соответствующей тяги из кабины водителя.

Управление работой диафрагменного механизма производится с помощью трехходового электропневматического клапана 21. Основное назначение дозатора — регулирование количества подаваемого в смеситель газа в зависимости от нагрузки двигателя и автоматическое уменьшение подачи газа при достижении двигателем максимальной частоты вращения коленчатого вала (2 550 мин»1). Система ограничения максимальной частоты вращения состоит из зубчатого венца 30, индуктивного датчика 29, электронного реле и трехходового электромагнитного клапана 21.

Смеситель 22 представляет собой цилиндр со вставленным в него диффузором типа сопла Вентури 23. Внутри диффузор имеет кольцевой коллектор подвода газа с радиальными отверстиями, через которые газ смешивается с воздухом, образуя гомогенную смесь, поступающую в цилиндры двигателя. Таким образом, мощность двигателя в газодизельном режиме меняется только за счет изменения количества поступающего в цилиндры газа через смеситель при постоянной величине запальной дозы дизельного топлива, равной 12… 16 мм3. Напомним, номинальная цикловая подача топлива при работе по дизельному циклу составляет в пять раз большую величину — 79…81 мм3.

Механизм установки запальной дозы топлива 25 при переводе тумблера, расположенного в кабине автомобиля, в положение «Газ» включает питание электромагнита, который переводит подвижный упор 26 в положение, когда он препятствует дальнейшему перемещению рычага управления регулятора топливного насоса 25.

Одновременно подвижный упор 26 при включении электромагнита отходит от концевого выключателя датчика 24 блокировки подачи газа и «неограниченной» доли дизельного топлива, обеспечивая тем самым включение питания электромагнитного клапана-фильтра 12 подачи газа. При выключении электропитания двигателя или в аварийных ситуациях, связанных, например, с выходом из строя электромагнита механизма установки запальной дозы 25, упор 26 вернется в первоначальное положение, включит датчик блокировки 24, который в свою очередь отключит цепь питания электромагнитного клапана 12 подачи газа. Аналогичные операции происходят при переводе двигателя из газодизельного в дизельный режим, когда тумблер в кабине водителя переводится в положение «Дизель».

Телескопическая тяга 27 служит для обеспечения перемещения педали 31 акселератора при включенном механизме ограничения хода рычага 28 управления регулятором ТНВД. В этом случае при нажатии на педаль 31 происходит сжатие пружины в телескопической тяге, и движение от педали передается на привод дроссельной заслонки дозатора 20 газа. В дизельном режиме телескопическая тяга работает как жесткий элемент, так как жесткость ее пружины значительно выше жесткости пружины рычага управления регулятора 28 ТНВД.

Возможна ли установка газового оборудования на дизельном двигателе

Как понятно из названия, речь – о системах питания газом двигателей, работающих на дизельном топливе.Действительно, переоборудовать для работы на газовом топливе, неважно, метане (CNG) или пропане (LPG), можно не только бензиновый, но и дизельный двигатель как грузового, так и легкового автомобиля.

* Базовая цена без учета баллонной части и опций. Для крупнотоннажных автомобилей цена рассчитывается отдельно. Звоните.

Коммерческое предложение для дизелей с поддержкой от Газпрома.

Установка газового оборудования (метан) на дизельные автомобили.

Переоборудование дизеля на метан

Метан на ISUZU Bogdan

Конвертация МАЗ 6430 на метан

2 акции от Газпром Газомоторное Топливо для юридических лиц

Источник статьи: http://nissan-wiki.ru/poleznoe/gazodizelnyj-dvigatel-2.html

Оцените статью