Генератор автомобиля постоянного или переменного тока

Принцип работы и устройство современного автомобильного генератора

В стандартном исполнении в автомобиле существуют два источника питания – генератор и аккумулятор. Разница между ними заключается в том, что АКБ накапливает электроэнергию, а автомобильный генератор ее вырабатывает. То есть это устройство преобразует механическую энергию от двигателя в электрическую с целью дальнейшего питания всех потребителей и заряда аккумулятора.

Функции генератора

При запуске двигателя пусковой ток на стартер подается от аккумулятора. Но сам аккумулятор не вырабатывает энергию, а только ее накапливает и потом отдает. Если использовать для питания всех потребителей только АКБ, то она быстро разрядится. Автомобильный генератор производит электроэнергию, заряжает АКБ и питает бортовую сеть автомобиля во время работы двигателя (при достижении им определенных оборотов вращения коленчатого вала).

Автомобильный генератор

Генератор начинает вырабатывать электрический ток начиная с частоты вращения холостого хода, однако, на оптимальный режим работы он выходит при достижении двигателем 1600-1800 об/мин и более.

Виды генераторов

Выделяют два вида автомобильных генераторов:

  • постоянного тока;
  • переменного тока.

Первый вид генераторов в настоящее время уже не используется. Такие устройства устанавливались на старых моделях автомобилей (ГАЗ-51, Победа и др.). Они имеют много недостатков, такие как:

  • малая мощность и эффективность;
  • необходимость в постоянном контроле и обслуживании;
  • небольшой срок службы.

Сейчас применяются генераторы переменного тока. Главное их отличие в том, что вне зависимости от режима работы двигателя автомобильную сеть питает постоянный ток. Это достигается благодаря полупроводниковому выпрямителю.

Читайте также:  Формула силы инерции автомобиля при торможении

Устройство генератора переменного тока

Работу любого генератора можно сравнить с электродвигателем, который работает в обратном режиме, то есть не потребляет, а вырабатывает ток. По типу конструкции современные генераторы делятся на два вида: компактный и традиционный. Они имеют общее устройство, но различаются в компоновке корпуса, вентилятора, выпрямительного узла и приводного шкива. Также у современных устройств имеется три фазы.

Устройство генератора

Генератор состоит из следующих основных элементов:

  • привод со шкивом, подшипниками и валом;
  • ротор с обмоткой возбуждения и контактными кольцами;
  • статор с сердечником и обмоткой;
  • корпус, состоящий из двух крышек;
  • регулятор напряжения;
  • выпрямительный блок или диодный мост;
  • щеточный узел.

Разберем каждый элемент устройства отдельно и подробно.

Корпус

В корпусе находятся все основные элементы генератора. Он состоит из двух крышек (передняя и задняя). Крышки соединяются между собой болтами. Для изготовления крышек используют легкие сплавы алюминия, которые не намагничиваются и хорошо отводят тепло. В крышках есть вентиляционные отверстия и крепежные фланцы.

В задней крышке установлен диодный мост и щеткодержатель со щетками. Также в задней крышке расположен выводной контакт, по которому ток поступает от генератора.

Привод

Вращение от коленчатого вала передается на шкив генератора и вращает ротор. Частота вращения шкива больше частоты вращения коленвала в 2-3 раза. Крутящий момент от двигателя передается посредством ременной передачи. Могут использоваться поликлиновый и клиновый ремень в зависимости от конструкции. Поликлиновый ремень считается более универсальным и современным.

Ротор

На валу ротора находится обмотка возбуждения, которая создает магнитное поле и, по сути, представляет собой обычный электромагнит. Обмотка находится между двух полюсных половин (сердечников), необходимых для регулирования и направления магнитного поля. Каждая из половин имеет по шесть треугольных выступов, называемых клювами. Также на валу ротора расположены два медных контактных кольца. Иногда они изготавливаются из стали или латуни. Через контактные кольца на обмотку возбуждения поступает питание от аккумулятора. Контакты обмотки припаяны к кольцам.

Ротор генератора

На переднем конце вала ротора находится приводной шкив, а на другом крепится крыльчатка вентилятора. Их может быть две. Они нужны для охлаждения внутренних деталей генератора. Также на обоих концах ротора установлены необслуживаемые шариковые подшипники.

Статор

Конструктивно статор имеет форму кольца. Это основная деталь, служащая для создания переменного тока от магнитного поля ротора. Состоит из обмотки и сердечника. В свою очередь, сердечник состоит из соединённых стальных пластин, в которых образуются 36 пазов. В пазы навивается три обмотки, которые образуют трехфазное соединение. Может быть две схемы соединения обмоток: «звезда» и «треугольник». По схеме «звезда» концы каждой из трех обмоток соединены в одной точке. По схеме «треугольник» концы обмоток выводятся отдельно.

Выпрямительный блок или диодный мост

Выпрямительный блок выполняет задачу по преобразованию переменного тока генератора в постоянный, который необходим для питания бортовой сети автомобиля. Другими словами, он выдает напряжение стабильной и одинаковой величины.

Диодный мост

Блок также называют диодным мостом, который состоит из двух радиаторных пластин (положительной и отрицательной) и диодов. На каждую фазу приходится по два диода. Сами диоды герметично вмонтированы в пластины. Диодный мост имеет форму подковы.

С обмотки статора ток поступает на диодный мост, затем «выпрямляется», и подается на выводной контакт на задней крышке.

Через диоды ток проходит только в одном направлении, при этом отсекаются токи обратной полярности. Диодный мост может находиться в корпусе генератора, а может быть вынесен за корпус. Но чаще всего он крепится на внутренней стороне задней крышки.

Регулятор напряжения

Регулятор поддерживает напряжение генератора в определенных пределах. В современных моделях применяются полупроводниковые электронные регуляторы напряжения. Они устанавливаются сверху блока щеткодержателей.

Регулятор напряжения и щеточный узел

Когда двигатель работает на больших оборотах, то напряжение на обмотке статора может доходить до 16В. Такое напряжение не должно поступать в бортовую сеть. Чтобы это исключить, регулятор напряжения, получая ток от АКБ, будет снижать его значение. Малый ток на обмотке ротора будет создавать такое же малое магнитное поле. Это значит, что на обмотке статора будет понижаться напряжение.

Щеточный узел

Щеточный узел в современных генераторах объединен с регулятором напряжения в один неразборный механизм. Он передает ток возбуждения на медные контактные кольца ротора. Это простая конструкция, которая состоит из щеткодержателя, двух графитовых щеток и прижимающих пружин.

Принцип работы

Теперь разберем подробнее работу генератора переменного тока в автомобиле. При включении зажигания, на щеточный узел подается ток от аккумуляторной батареи. Через щеточный узел он попадает на медные контактные кольца, а затем на обмотку возбуждения ротора. Напомним, что ротор, по сути, является электромагнитом, который создает магнитное поле. Коленчатый вал через шкив и ременную передачу начинает вращать ротор. Вокруг ротора расположен статор, который от вращения начинает вырабатывать переменный ток. Когда вращение ротора достигает определенной частоты, обмотка возбуждения питается от самого генератора.

Через диодный мост переменный ток “выпрямляется” и преобразуется в постоянный, необходимый для питания бортовой сети. Так автомобильный генератор обеспечивает питание потребителей и подзаряжает аккумулятор. Регулятор напряжения изменяет работу обмотки возбуждения при возрастании частоты вращения ротора. Таким образом поддерживается стабильная нагрузка.

В салоне автомобиля на приборной панели есть контрольная лампа генератора, которая показывает состояние устройства. Например, лампа может загореться при обрыве ремня. Тогда питание сети будет идти только через аккумулятор. Продолжительность работы в этом случае будет зависеть от уровня заряда АКБ.

Параметры генератора

Работу генератора оценивают по нескольким параметрам:

  • номинальный ток и номинальное напряжение;
  • номинальная частота возбуждения;
  • частота самовозбуждения;
  • коэффициент полезного действия (КПД).

Номинальное напряжение для бортовой сети автомобиля от генератора 12В или 24В. Токоскоростная характеристика показывает зависимость силу тока от частоты вращения генератора.

Характеристика генератора

Напряжение генератора можно измерить мультиметром. При всех выключенных потребителях без нагрузки на холостом ходу мультиметр должен показывать напряжение в пределах 14,3В – 15,5В. Если напряжение после запуска двигателя свыше 14В, то это может говорить о разряде АКБ и зарядке его генератором. При поочередном включении потребителей (фары, подогрев, кондиционер и т.д.) напряжение уменьшается примерно на 0,2 после каждого включения. Но в итоге напряжение не должно снижаться ниже 12,8В. Если значение меньше, то аккумулятор начнет разряжаться. Если напряжение, наоборот, сильно высокое (14В и выше), то это может привести к выходу АКБ из строя. При этом на выходе самого аккумулятора напряжение должно быть в пределах 12,6В – 12,7В.

Напряжение генератора под нагрузкой может отличаться от номинальных значений 12В. После включения всех потребителей тока значение должно быть в пределах 13,5В – 14В. Если ниже, то это может указывать на неисправность устройства. Допустимым пределом считается 13В.

На картинке ниже показана подробная схема подключения генератора в автомобиле.

Схема подключения генератора

Мощность автогенератора

Если включить все энергоемкие приборы в автомобиле, то генератор может не справляться с нагрузкой и часть энергии будет отдавать аккумулятор.

Чтобы рассчитать мощность генератора достаточно воспользоваться простой формулой из школьного курса P = I * U, где Р – мощность, I – сила тока, U – напряжение.

Мы узнали, что напряжение на выходе генератора должно быть в районе 13,5В – 14,2В. Сила тока у разных моделей может отличаться. В среднем это от 80А до 140А. Возьмем среднее значение в 100А.

По формуле получаем 13,5В*100А = 1 350 Вт или 1,35 КВт. Это и есть мощность генератора, которая измеряется в Ваттах. Нужно также учитывать, что это максимальное значение, которое достигается при определенных оборотах двигателя, как правило, от 3000 об/мин и выше. На холостом ходе выдаваемая мощность равняется 75% от максимально возможной. Считается, что для автомобиля хватает 80А. Если применить более мощный автогенератор, то бортовая сеть может не справиться с нагрузкой. Нужно это учитывать. Большая мощность не всегда идет на пользу.

Основные неисправности

Устройство довольно надежное и должно работать продолжительное время, но некоторые компоненты могут выходить из строя по разным причинам. Неисправности могут иметь механический или электрический характер.

Механические неисправности

Главной возможной поломкой может быть обрыв приводного ремня. В этом случае вращение от коленвала на ротор не будет передаваться. Всю нагрузку на себя берет аккумулятор, который начнет разряжаться. Это покажет контрольная лампа в салоне автомобиля. Чтобы избежать обрыва ремня, нужно периодически проверять его состояние и натяжение.

Также может случиться простой износ графитовых щеток. В этом случае надо менять весь щеточный узел.

Электрические неисправности

Неполадки с электрикой в генераторе случаются нередко, и заметить их трудно. Может возникнуть замыкание в обмотках возбуждения ротора или статора, обрыв обмотки. Может выйти из строя регулятор напряжения, что чревато большими проблемами для всей электроники и АКБ. Также случается так называемый пробой диодного моста по различным причинам. Нельзя отключать генератор или АКБ во время работы двигателя. Также нужно следить за надежностью соединений, чистить клеммы и т.д.

Каждому водителю нужно знать устройство и принцип работы автомобильного генератора. Это поможет избежать многих проблем, которые могут возникнуть с устройством. Нужно регулярно следить за компонентами генератора. Проверять натяжение и состояние приводного ремня, крепление устройства, напряжение и другое. При правильной эксплуатации устройство прослужит исправно долгие годы.

Источник статьи: http://techautoport.ru/elektrooborudovanie-i-elektronika/istochniki-pitaniya/generator.html

Автомобильный генератор

Содержание

Автомоби́льный генера́тор — устройство, обеспечивающее преобразование механической энергии вращения коленчатого вала двигателя автомобиля в электрическую.

Автомобильный генератор используется для питания электропотребителей, таких как система зажигания, автомобильная светотехника, бортовой компьютер, система диагностики и другие, а также для заряда автомобильного аккумулятора [1] . К автомобильным генераторам предъявляют высокие требования по надёжности, так как генератор обеспечивает бесперебойную работу большинства компонентов современного автомобиля. Типовая мощность современного генератора в легковом автомобиле около 1кВт.

Устройство и общий принцип работы

На первых автомобилях применяли коллекторные генераторы постоянного тока, коллекторный узел которых требовал постоянного контроля и частого обслуживания и, вдобавок, серьёзно ограничивал ток нагрузки. Появление мощных диодных выпрямителей, вначале селеновых, а позднее кремниевых, позволило использовать на автомобиле синхронный генератор переменного тока, несравнимо более надёжный и примерно втрое менее тяжёлый/материалоёмкий при той же мощности и более стабильном выходном токе.

В современных автомобилях применяются синхронные трёхфазные электрические машины переменного тока, а в выпрямителе применяют трёхфазный выпрямитель по схеме Ларионова.

Чтобы генератор после пуска двигателя отдавал ток в нагрузку, необходимо обеспечить питание обмотке возбуждения. Это происходит при повороте ключа замка зажигания в рабочее положение. Ток в обмотке возбуждения управляется стабилизатором напряжения, который может быть выполнен в виде отдельного узла или встроен в щёточный узел генератора. В подавляющем большинстве современных генераторов стабилизатор напряжения (СН) питается от отдельной секции выпрямителя. Ротор генератора приводится от коленвала через шкив от клинового ремня. Создаваемое обмоткой возбуждения электромагнитное поле индуцирует электрический ток в фазовых обмотках статора.

Из-за нестабильности частоты вращения двигателя и частых скачкообразных изменений нагрузки необходима стабилизация выходного напряжения генератора, её обеспечивает стабилизатор напряжения путём изменения тока возбуждения генератора.

Напряжение бортовой сети при работающем генераторе и исправном регуляторе напряжения поддерживается на уровне 13,9 — 14,5 В. Это напряжение необходимо для обеспечения прохождения тока заряда через аккумуляторную батарею, при этом необходимо обеспечить некоторое превышение совместного электрохимического потенциала всех пластин всех банок, иначе автомобильный аккумулятор не будет заряжаться.

На автомобилях и автобусах с мощными дизельными двигателями используются мощные автомобильные стартеры. Для обеспечения мощности без повышения потребляемого тока используется повышенное напряжение бортовой сети — 24 Вольта. Устанавливаются соответственно 24-вольтовые (номинально 28,4 Вольта) генераторы.

На старых автомобилях и мотоциклах напряжение в бортовой сети составляло 6 Вольт, генераторы тоже были 6-вольтовые, как правило, трёхщеточные постоянного тока с реле обратного тока (ГАЗ-67Б, Москвич-400, ЗИС-110).

Генераторы постоянного тока

На автомобилях выпуска до 1960-х годов (например ГАЗ-51, ГАЗ-69, ГАЗ-М-20 «Победа» и многих других) устанавливались генераторы постоянного тока.

На полюсах генератора (находятся на статоре), выполненных из электротехнической стали, находится обмотка возбуждения. На якоре генератора — силовая обмотка, с которой электрический ток снимается посредством коллектора с щётками. Обмотка возбуждения и обмотка якоря соединены параллельно, в цепь обмотки возбуждения включен реле-регулятор.

Реле-регулятор состоит из трёх электромагнитных реле:

1. Ключевой стабилизатор напряжения (на электрических схемах сокращённо обозначается СН) уменьшает магнитный поток в обмотке возбуждения (на статоре); обмотка реле включена последовательно с обмоткой возбуждения. При повышении напряжения на генераторе выше расчётного предела (например более 14,5 вольт) электромагнитное реле срабатывает и последовательно обмотке возбуждения включается дополнительное сопротивление, ограничивающее ток возбуждения, уменьшается магнитный поток, и, следовательно, напряжение на генераторе уменьшится. При уменьшении напряжения ниже расчётного электромагнитное реле шунтирует дополнительное сопротивление, ток в обмотке возбуждения возрастает, возрастает магнитный поток и напряжение на генераторе повышается. Поскольку процесс протекает с большой частотой, напряжение в бортовой сети автомобиля остаётся почти постоянным.

В автомобильных ключевых стабилизаторах напряжения генераторов постоянного тока реле является прецизионным триггером Шмитта, контакты реле, шунтирующие дополнительное последовательное сопротивление в обмотке возбуждения генератора — ключевым исполнительным элементом, а генератор — объектом управления.

Ключевой стабилизатор напряжения с триггером Шмитта прост по конструкции. Частота замыкания/размыкания ключа в нём определяется суммой постоянных времени заряда и разряда накопителя объекта управления (аккумулятора и других потребителей электроэнергии) и разницей между максимально допустимым и минимально допустимым напряжениями. Чем больше диапазон допустимых напряжений, тем меньше частота замыкания/размыкания ключа. При постоянной нагрузке частота замыкания/размыкания постоянна. Значительно меньшая частота замыкания/размыкания ключа в ключевых стабилизаторах напряжения на триггере Шмитта, по сравнению с другими схемами стабилизаторов, позволяет применять более низкочастотные ключи, которые дешевле высокочастотных и более широко распространены. Именно применение схемы ключевого стабилизатора напряжения с триггером Шмитта позволило применить в автомобильных регуляторах напряжения такие низкочастотные ключевые переключающие элементы, как реле.

2. Ограничитель тока (сокращённо ОТ) — электромагнитное реле, не позволяющее току генератора превышать расчётную величину. Обмотка ограничителя тока включена последовательно между генератором и потребителями. При достижении током расчётной силы, а значит и в обмотке ограничителя тока реле срабатывает и в цепь обмотки возбуждения включается дополнительное сопротивление, уменьшается ток возбуждения, уменьшается напряжение на генераторе, а следовательно, уменьшается ток, отдаваемый генератором. При отключении потребителей ограничитель тока поддерживает постоянную величину зарядного тока аккумуляторной батареи. При включении потребителей электроэнергии зарядный ток будет уменьшаться в зависимости от сопротивления нагрузки. При этом, если ток внешней цепи превышает максимально допускаемый ограничителем тока, то, кроме тока генератора, во внешнюю цепь пойдёт ток из аккумуляторной батареи, то есть батарея будет разряжаться.

Ограничитель тока и регулятор напряжения работают не одновременно. Пока ток, отдаваемый генератором не достигнет допускаемой максимальной величины, работает только регулятор напряжения. Когда ток генератора достигнет предельной величины, ограничитель тока включает дополнительное сопротивление, а регулятор напряжения перестаёт работать.

3. Реле обратного тока (сокращённо РОТ). При длительном прохождении тока из батареи через генератор могут перегреться обмотки, кроме того, бесполезно разряжается аккумулятор. Назначение реле обратного тока — автоматически отключать генератор от внешней цепи, когда его напряжение станет меньше напряжения батареи и включать генератор, как только напряжение генератора превысит расчётную величину.

Если на панели приборов установлена контрольная лампа работы генератора (зажигается при низком напряжении генератора, когда расходуется энергия аккумулятора) — устанавливается четвёртое реле (обычно выполняется в отдельном корпусе) — реле включения контрольной лампы.

В СССР серийно выпускались только вибрационные реле-регуляторы (с электромагнитными реле), в 1970-е — 1980-е годы отмечено появление радиолюбительских конструкций на полупроводниковых приборах (публиковались в журналах «Радио», «За рулём», «В помощь радиолюбителю».

Генераторы переменного тока

Первая конструкция генераторов переменного тока была представлена фирмой «Невиль», США в 1946 году. Она состояла практически из всех элементов характерных генераторам постоянного тока: генератор переменного тока с обмоткой возбуждения (отдельно), блок селеновых выпрямителей (отдельно) и ключевой стабилизатор напряжения (СН), реле обратного тока (РОТ), ограничитель тока (ОТ) — три изделия в одном корпусе отдельно. Основное назначение изделия мощностью 4 кВт — специальные военные автомобили и автобусы. По массо-габаритным характеристикам данная разработка была в 2,5 раза меньше аналога на постоянном токе.

В СССР, примерно в 1954 году, была представлена первая конструкция генератора переменного тока только со СН и выпрямительным блоком на селеновых выпрямительных диодах. Основной разработчик МЭИ, коллектив которого ранее опубликовал статью по синхронным генераторам с селеновыми выпрямителями. В 1955 году была выпущена первая партия для автомобилей ГАЗ в количестве 2000 шт. Разработка, оптимизация серийной конструкции и организация производства были осуществлены под руководством НИИ Автоприборов (сейчас НИИАЭ) и завода КЗАТЭ г. Самара. Одними из ведущих разработчиками благодаря которым в СССР и на Европейском континенте появилась первая серийная конструкция генераторов переменного тока были Ю. А. Купеев (НИИ Автоприборов) и В. И. Василевский (КЗАТЭ г. Самара).

В 1960 году фирма «Крайслер» представила первую в мире конструкцию с кремниевыми выпрямителями и улучшенной технологией изготовления. В остальном она повторяла разработку авторов из СССР. Тогда же в США начался массовый переход на генераторы переменного тока, который впоследствии произошёл и в СССР только в 1967 году.

Первый конкурентоспособным с изделиями фирмы «Крайслер» серийным генератором в СССР стал Г250.

На современных автомобилях применяются синхронные трёхфазные генераторы переменного тока со встроенным полупроводниковым трёхфазным выпрямителем.

Ротор автомобильного генератора переменного тока имеет обмотку возбуждения (у генератора постоянного тока обмотка возбуждения находится на сердечниках полюсов), ток подводится через щётки и контактные кольца. Статор имеет три обмотки, соединённые «звездой». Снимаемый со статора ток выпрямляется шестью полупроводниковыми диодами (встроены в выпрямительный щит) и становится постоянным пульсирующим. Далее выпрямленный ток поступает в бортовую электросеть автомобиля.

Ключевой стабилизатор напряжения регулирует ток обмотки возбуждения по принципу отрицательной обратной связи таким образом, чтобы выходное напряжение генератора было как можно более стабильным. Ключевой стабилизатор напряжения на триггере Шмитта позволяет применять более низкочастотные ключевые регулирующие элементы, которые дешевле и более широко распространены, чем высокочастотные ключевые регулирующие элементы, вплоть до таких низкочастотных ключевых регулирующих элементов, как реле.

Ключевые стабилизаторы напряжения генераторов переменного тока могут быть вибрационные (только электромагнитные реле), контактно-транзисторные (электромагнитные реле, управляемые транзисторной схемой) или бесконтактные (электромагнитное реле отсутствует, ток регулирует электронный ключ на транзисторах). Конструктивное исполнение — выполненные в отдельном корпусе или встроенные в генератор.

Например, на автомобиле ГАЗ-53 применялся контактно-транзисторный стабилизатор напряжения РР-362 (генератор Г-250), на ВАЗ-2101 — вибрационный стабилизатор напряжения РР-380 (генератор Г-221), а на автомобиле Москвич-2140 — контактно-транзисторный стабилизатор напряжения РР-362А. На более поздних выпусках автомобилей ВАЗа и Москвиче-2140 использовался импульсный стабилизатор напряжения Я-112.

Ограничитель тока не используется, так как генераторы переменного тока обладают свойством самоограничения по току благодаря противоиндукции ротора фазными обмотками при возрастании в них тока, реле обратного тока отсутствует как таковое, его функции выполняет выпрямитель; характерно использование реле включения контрольной лампы работы генератора, питаемое или от нулевой точки выпрямителя, или от двух фаз генератора. В отдельных случаях (Г-502 на ЗАЗ-968) функции такого реле исполняет реле блокировки стартера РБ-1, оно же разрывает цепь питания реле стартера после пуска двигателя.

Применение генераторов переменного тока позволяет уменьшить габаритные размеры, вес генератора, повысить его надёжность, сохранив или даже увеличив его мощность по сравнению с генераторами постоянного тока.

Например, генератор постоянного тока Г-12 (автомобиль ГАЗ-69) весит 11 кг, номинальный ток 20 ампер, а генератор переменного тока Г-250П2 (автомобиль УАЗ-469) при массе 5,2 кг выдаёт номинальный ток 28 ампер.

Источник статьи: http://wiki2.info/%D0%90%D0%B2%D1%82%D0%BE%D0%BC%D0%BE%D0%B1%D0%B8%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80

Оцените статью