Индукторные генераторы для автомобилей

Устройство автомобилей

Генераторы переменного тока

Развитие автомобилестроения сопровождалось ростом требований к безотказности и увеличению срока службы автомобилей, комфорту их эксплуатации, снижению эксплуатационных затрат на техническое обслуживание и ремонт, а также соответствие все возрастающим требованиям безопасности движения.
В связи с этим появилась необходимость существенного увеличения мощности и срока службы автомобильных генераторов, как основных источников электрического тока, улучшения их эксплуатационных характеристик и снижения эксплуатационных затрат. Появилась необходимость уменьшения габаритных размеров и массы генераторов, как, впрочем, и многих других агрегатов и устройств, что позволяло гибко проектировать компоновку и внешний дизайн автомобилей, а также получать экономию дорогостоящих металлов.

Удовлетворение перечисленных требований путем совершенствования конструкции и технологии производства генераторов постоянного тока, учитывая низкую надежность и малый срок службы щеточно-коллекторного узла, а также габаритные размеры и массу генераторов постоянного тока, стало неосуществимо. Поэтому было выбрано новое направление в развитии автомобильных генераторов – создание генераторов переменного тока.

Название «генератор переменного тока» несколько условно, и касается в основном особенностей конструкции генератора, поскольку они оснащены встроенными полупроводниковыми выпрямителями и питают потребители постоянным (выпрямленным) током.
В генераторах постоянного тока таким выпрямителем является щеточно-коллекторный узел, осуществляющий выпрямление переменного тока, полученного в обмотках якоря.
Развитие полупроводниковой техники позволило применить в генераторах переменного тока более совершенный и надежный выпрямитель на полупроводниковых диодах, в котором отсутствовали механические детали и узлы, подверженные износу и отказам.

Преимущества и недостатки генераторов переменного тока

К основным преимуществам генераторов переменного тока по сравнению с генераторами постоянного тока можно отнести следующие свойства:

  • при одинаковой мощности их масса в 1,8…2,5 раза меньше, причем примерно в три раза меньше расходуется ценного цветного металла – меди;
  • при одинаковых габаритах генераторы переменного тока выдают большую мощность;
  • ток начинает вырабатываться при меньшей частоте вращения ротора;
  • проще схема и конструкция регулирующего устройства вследствие отсутствия элемента ограничения силы тока и реле обратного тока;
  • проще и надежнее конструкция токосъемного устройства, особенно, в бесконтактных генераторах переменного тока;
  • меньше эксплуатационные затраты из-за высокой надежности работы и увеличения срока службы.
Читайте также:  Где производят автомобиль smart

С практической точки зрения преимущества генератора переменного тока проявляются в том, что вырабатываемый им ток снимается с неподвижных обмоток, закрепленных на корпусе-статоре. Обмотка возбуждения, выполненная на вращающемся роторе, существенно легче неподвижных обмоток статора, поэтому ротор можно вращать с большей скоростью, не опасаясь явлений дисбаланса вращающихся масс. Да и ток возбуждения в этом случае подвести проще, поскольку он небольшой. В результате щетки и контактные кольца служат дольше.

Кроме того, генератор постоянного тока, в отличие от генератора переменного тока, начинает вырабатывать ток при относительно большой частоте вращение якоря. По этой причине для его полноценного функционирования, например, на холостых оборотах двигателя, необходимо значительное передаточное число привода, что в дальнейшем (на рабочей частоте коленчатого вала) может привести к дисбалансу (из-за значительной массы якоря), износу подшипников и элементов привода генератора.

Определенное преимущество генераторов переменного тока проявляется, также, в том, что при необходимости получения высокого напряжения (например, для питания высоковольтных потребителей), достаточно использовать небольшой трансформатор. Увеличить напряжение постоянного тока таким способом не удастся. Несмотря на то, что в автомобильных бортовых сетях необходимость получения высокого напряжения возникает крайне редко, такую возможность нельзя сбрасывать со счетов.

Основные недостатки генератора переменного тока — необходимость выпрямления вырабатываемого им тока, а также некоторое рассеивание мощности в окружающих ротор и статор металлических деталях из-за возникновения вихревых и реактивных токов в переменном электромагнитном поле. Тем не менее, достоинства генераторов переменного тока с лихвой окупают отмеченные недостатки.

Первые автомобильные генераторы переменного тока были спроектированы для работы с отдельными селеновыми выпрямителями и вибрационными регуляторами напряжения. Селеновые выпрямители имели значительные размеры, и их приходилось размещать отдельно от генератора, в местах, где обеспечивалось хорошее охлаждение. Для присоединения такого выпрямителя к генератору требовалась дополнительная проводка.
Кроме того, селеновые выпрямители были недостаточно теплостойки, и допускали максимальную рабочую температуру не выше +80 ˚С.
По этим причинам в дальнейшем от селеновых выпрямителей отказались, и стали применять кремниевые диоды, которые были менее габаритны, обладали хорошей теплостойкостью, что позволяло размещать их непосредственно в генераторе.

На смену вибрационным регуляторам напряжения пришли сначала контактно-транзисторные, а затем бесконтактные на дискретных элементах и бесконтактные интегральные регуляторы.
Габаритные размеры интегральных регуляторов позволяют встраивать их в генератор, который совместно со встроенными регулятором и выпрямительным блоком называется генераторной установкой.

Принципиальное устройство генератора переменного тока

На рис. 1 представлена упрощенная схема генератора переменного тока, который состоит из двух основных частей: статора с неподвижной обмоткой, в которой индуцируется переменный ток, и ротора, создающего магнитное поле.

Полюсы ротора поочередно проходят мимо неподвижных катушек статора, размещенных на пазах с внутренней стороны корпуса генератора. При этом изменяется направление магнитного потока, а, следовательно, и направление индуцируемой в катушке ЭДС.

Обычно число полюсов магнита на роторе и число катушек в корпусе позволяет получить трехфазный ток. У трехфазных генераторов обмотки имеют одну общую точку, где соединяются их концы, поэтому такая схема соединения называется «звездой», а общая точка обмотки – нулевой точкой.

Вторые концы обмоток присоединяют к двухполупериодному выпрямителю. Магнитное поле ротора может создаваться постоянным магнитом или электромагнитом. В последнем случае к обмотке возбуждения электромагнита подводится постоянное напряжение.

Применение в роторе электромагнитов усложняет конструкцию генератора, так как необходимо подводить напряжение к вращающейся детали – ротору, но в этом случае возможно регулирование напряжения изменением частоты вращения ротора. Кроме того, магнитные свойства постоянных магнитов существенно зависят от их температуры.

Более подробно устройство и работа автомобильного генератора переменного тока приведены на следующей странице.

Бесконтактные генераторы с электромагнитным возбуждением

Для автомобильных генераторов надежность и срок службы определяются тремя факторами:

  • качеством электрической изоляции;
  • качеством подшипниковых узлов;
  • надежностью токосъемных (щеточно-контактных) устройств.

Первые два фактора зависят от уровня развития смежных производств. Третий фактор может быть исключен путем использования бесконтактных генераторов, имеющих более высокую надежность и ресурс, чем контактные генераторы, использующие щеточно-контактные токосъемные устройства. Это стимулировало создание автомобильных бесконтактных генераторов переменного тока с электромагнитным возбуждением – индукторных генераторов и генераторов с укороченными полюсами.

К бесконтактным генераторам с электромагнитным возбуждением относятся индукторные генераторы и генераторы с укороченными клювами. Работает генератор следующим образом. Обмотка возбуждения, по которой протекает постоянный ток, создает в магнитной системе поток, который при вращении ротора изменяется по величине без изменения знака. Этот поток замыкается, проходя через воздушные зазоры между валом и элементами ротора, зубцы которого выполнены в виде звездочки, воздушный зазор между ротором и статором, магнитопровод статора и крышку генератора.

Изменение магнитного потока в якоре при вращении ротора происходит за счет изменения магнитного сопротивления воздушного зазора между зубцами статора и ротора.
Магнитный поток Ф у индукторных генераторов пульсирующий. Магнитный поток в воздушном зазоре периодически изменяется от Фmах, когда оси зубцов ротора и статора совпадают, до Фmin, когда оси зубцов ротора и статора смещены на угол 180˚ электрических градусов. Таким образом, магнитный поток имеет среднюю постоянную и переменную составляющую с амплитудой

3убец и впадина ротора (индуктора) генератора образуют пару полюсов, поэтому частота тока якоря в индукторе генератора может быть определена по формуле:

где z — число зубцов ротора.

В генераторах с укороченными полюсами бесконтактность достигается за счет неподвижного крепления обмотки возбуждения с помощью немагнитной обоймы. Полюсы клювообразной формы имеют длину меньше половины длины активной части ротора. В процессе вращения ротора магнитный поток возбуждения пересекает витки обмотки статора, индуцируя в них ЭДС.

Генераторы с укороченными полюсами просты по конструкции, технологичны. Роторы таких генераторов имеют малое рассеяние.
К недостаткам можно отнести несколько большую, чем у контактных генераторов, массу при той же мощности. Также следует отметить трудность крепления обмотки возбуждения и обеспечения жесткости и механической прочности ее крепления.

Применение на автомобилях существующих конструкций индукторных генераторов долго сдерживалось следующими трудностями:

  • невысокие удельные показатели;
  • повышенный уровень пульсации выпрямленного напряжения;
  • повышенный уровень шума.

Дальнейшее совершенствование конструкции и устранение вышеперечисленных недостатков позволило использовать индукторные генераторы переменного тока на автомобилях.

Впервые бесщеточные генераторы с укороченными полюсами 45.3701 и 49.3701 были использованы на автомобилях марки «УАЗ».

Небольшой видеоролик позволит наглядно понять основные принципы работы и устройство автомобильного генератора переменного тока.

Источник статьи: http://k-a-t.ru/mdk.01.01_elektro/21-generator/index.shtml

Бесконтактные индукторные генераторы. Принцип работы

Переменная ЭДС индуктиру­ется в неподвижных катушках фазных обмоток 3 при пересечении витков изменяющимся электромагнитным полем, которое создается вращением шестилучевой звездочки ротора 4, намагниченной одно­именными полюсами обмоткой возбуждения 5. Обмотка возбуждения намотана на стальную втулку 7, закрепленную на крышке 6 генератора так, что лучи звездочки движутся у торца катушки возбужде­ния. Обмотка возбуждения питается постоянным током через клем­мы «Ш» и «М».

Катушки с одинаковой по фазе ЭДС со­единены между собой последовательно. Фазы включены между собой в «треугольник» На автомобильных генераторах широко применяют включение фаз в «звезду»: концы всех фаз соединяют вместе в общую нулевую точ­ку, которую иногда выводят отдельным (нулевым) проводом или изо­лируют в генераторе, а начала трех фаз подводят к выпрямителю.

Выпрямление переменного тока в автотракторных генераторах осуществляется кремниевыми полупроводниковыми диодами (венти­лями). Диоды для встроенных в автотракторные генераторы выпрямите­лей выпускаются двух типов — прямой и обратной полярности. У дио­да прямой полярности (VI, V2, V3 на рисунке) катодным выводом является корпус, а анодный вывод пропущен через изолятор. Эти диоды проводят ток от анодного вывода к корпусу. У диодов обрат­ной полярности с корпусом соединен анод, а катод выведен через изолятор. Диоды обратной полярности проводят ток от корпуса к выводу. Диоды прямой и обратной полярности не взаимозаменяемы. Диоды прямой полярности (серии ВА) помечены на корпусе красной краской, а обратной полярности — черной.

Рис. Схемы трехфазного индукторного генератора

Источник статьи: http://ustroistvo-avtomobilya.ru/akkumulyator-generator-starter/generator/beskontaktny-e-induktorny-e-generatory/

Индукторные генераторы

ЛЕКЦИЯ № 29

Тема: Индукторные и бесщеточные синхронные машины.

Цель: Изучить особенности конструкции, принципа действия, рабочих свойств и применение индукторных и бесщеточных синхронных машин

План: 1.Индукторные машины.

2. Бесщеточные синхронные генераторы.

3. Синхронные двигатели специального исполнения.

Литература: 1. Бургардт К.А., Просужих Р.П.

«Корабельные электрические машины».

Часть 2. 1980., стр. 342 – 347.

Лекция обсуждена и одобрена на заседании кафедры

Протокол № _____ от «_____» _____________200 г.

Преподаватель: Просужих Р.П.

Лекция № 29. Индукторные и бесщеточные синхронные машины.

Индукторные и бесщеточные генераторы

Индукторные генераторы.

В промышленности и на АЭС находят применение синхронные машины особой конструкции. Одной из таких машин является индукторный генератор, который служит источником электроэнергии переменного тока высокой частоты (400– 30000 Гц) и может использоваться в системах возбуждения крупных турбогенераторов, в установках индукционного нагрева и т.п.

Принцип действия индукторных генераторов основан на использовании зубцовых пульсаций магнитного потока. При этом магнитный поток возбуждения, индуктирующий переменную ЭДС, не изменяет своего направления, а меняется по величине от Фminдо Фmax. и неподвижен в пространстве, то есть не вращается при наличии вращения ротора.

В первом приближении различают два типа индукторных генератора – одноименнополюсные и разноименнополюсные. В том и другом случае ротор генератора представляет собой зубчатый цилиндр либо набранный из листов электротехнической стали, либо массивный. Статор как обычно набирается из листов электротехнической стали и в его пазах размещают витки обмотки переменного тока. Шаг витков обычно равен единице, т.е. на каждом зубце статора расположена определенная катушка обмотки переменного тока, в которой и наводится ЭДС.

В одноименнополюсных генераторах предусмотрено по два пакета стали на статоре и на роторе, соединенных между собой сердечниками как показано на рисунке 1. Обмотка возбуждения в этом случае представляет собой сосредоточенную кольцевую катушку, которую размещают на статоре между пакетами стали. Она должна быть подключена к источнику постоянного тока. Она создает магнитный поток, который замыкается по всему магнитопроводу создавая в пакетах ротора (и статора) полюсы всегда одной полярности.

Чтобы в обмотке возбуждения не индуцировалось ЭДС высокой частоты, необходимо обеспечить постоянство магнитного потока и соответственно магнитного сопротивления по всей длине магнитных силовых линий. Это достигается тем, что один пакет ротора смещен относительно другого пакета ротора на половину зубцового деления.

Рисунок 1. Конструктивная схема однополюсного индуктивного генератора

В разноименнополюсных индукторных генераторах имеется по одному пакету на статоре и роторе. При этом обмотка возбуждения – это сосредоточенная обмотка, уложенная в большие пазы статора, а обмотка переменного тока – устроена также, как в одноименнополюсных генераторах, и укладывается в малые пазы статора.


Зубцовые шаги статора и ротора выбираются так, чтобы суммарное магнитное сопротивление на пару полюсов возбуждения и соответственно суммарный магнитный поток машины, сцепленный с обмоткой возбуждения, не изменялись бы по мере вращения ротора. Это обеспечивает отсутствие ЭДС высокой частоты в обмотке возбуждения.

Рисунок 2. Смещение пакетов левой и правой части индукторного генератора

В то же время по мере вращения ротора его зубцы меняют свою полярность при переходе от одной катушки возбуждения к другой. Изменение направления ЭДС обмотки переменного тока и ее синусоидальность обеспечиваются также как в одноименнополюсных машинах – т.е. пульсацией магнитного потока по отношению

к каждой катушке обмотки переменного тока и формой зубцов ротора. Применяется также и скос пазов.

Индукторная синхронная машина как и все электрические машины обладает свойством обратимости, т.е. может работать в режимах генератора и электродвигателя.При этом можно получить очень малые значения частоты вращения в соответствии с формулой:

, поскольку р = Z2.

Например, при f1 = 50 Гц: Z2 = 100.

об/мин.

Обмотка якоря

Рисунок 3. Конструктивная схема разнополюсного индукторного генератора

Обмотка возбуждения индукторного синхронного генератора может состоять из нескольких самостоятельных обмоток, которые получают питание из разных источников. Это необходимо для улучшения характеристик генератора.

Например, в индукторном генераторе ВГТ– 4500/500, применяемом в качестве возбудителя турбогенератора ТВВ– 320 – 2, основной ток возбуждения составляет 3000А., а вспомогательные обмотки возбуждения имеют токи 160 А и 800 А. Естественно, что для выпрямления тока обмотки переменного тока индукторного генератора необходимо иметь полупроводниковые (кремниевые) выпрямители.

Индукторные машины не требуют применения щеточного контакта, т.е. являются бесщеточными.

Источник статьи: http://mydocx.ru/10-92848.html

Оцените статью