Исследования по электро автомобилям

Исследования по электро автомобилям

Автомобили на сегодняшний день являются одним из популярных и комфортных вариантов перемещения. Однако, несмотря на огромное количество преимуществ, они имеют целый ряд недостатков. Один из самых главных недостатков заключается в том, что автотранспорт наносит большой ущерб окружающей среде – до 63 %. Также бензиновые автомобили являются довольно дорогим видом транспорта. Последнее время нефтепродукты стремительно дорожают. Эти факты привели к тому, что развитые страны стали разрабатывать и выпускать менее расточительные и более экологичные автомобили. В этой статье мы постараемся объяснить, что представляет собой транспорт будущего, которое уже становится настоящим – электромобили.

Для того чтобы понять, что же такое электромобиль, рассмотрим определение, которое представлено в Википедии. Электромобиль – автомобиль, который приводится в движение одним или несколькими электродвигателями с питанием от автономного источника электроэнергии (аккумуляторов, топливных элементов и т.п.), а не двигателем внутреннего сгорания.

История электромобилей составляет около 180 лет. Из этого следует, что первые электромобили появились почти на 50 лет раньше первого автомобиля. Толчком к их развитию послужило открытие Фарадеем явления электромагнитной индукции, после чего инженеры и изобретатели принялись искать пути его практического применения. Все электромобили того времени имели большой вес, передвигались со скоростью не более 4 км/ч и были не совсем пригодны к практическому применению. Развитие электромобилей сдерживало отсутствие сравнительно небольших и подзаряжаемых аккумуляторов [2].

Интерес к электромобилям возродился в 90-х годах 20 века, когда остро встала проблема загрязнения окружающей среды и истощения нефтяных запасов.

Читайте также:  Переделка двигателя автомобиля это

Первым серийным электромобилем нашей современности стал GM EV1, выпускавшийся в США с 1996 по 2003 годы.

Наиболее известными серийно выпускаемыми моделями электромобилей можно считать: Toyota RAV4 EV, ZENN, ZAP Xebra, General Motors EV1, Chevrolet Volt, Volvo C30 BEV, Tesla Roadster, Tesla Model S, Modec, Reva NXR, Renault серия Z.E., Nissan LEAF, Tazzari ZERO, Lada Ellada.

В немецком центре полёта Оберпфаффенхофене сейчас разрабатывают электромобиль послезавтрашнего дня, так называемый робомобиль. Он должен без водителя самостоятельно перемещаться по городу и находить место для парковки. Инженер Ёнотан Брембик работает в институте Робототехники и мехатроники. Его робомобиль должен решить проблему парковочных мест и пробок в перенаселенных мегаполисах будущего. Как говорит сам инженер, «это будет машина всеобщего доступа, когда человеку нужна машина, робомобиль подъезжает, его можно использовать для доставки человека к цели, а потом он самостоятельно вернется в гараж, откуда его сможет вызвать следующий пользователь». Робомобиль будет ориентироваться в городе с помощью спутникового навигатора. Многочисленные камеры и датчики помогут ему различать на улице людей и другие машины. Автомобиль оснащен множеством сенсоров, на крыше установлено несколько камер, обеспечивающих обзор 360 градусов, информация от них передается на центральный компьютер, который оценивает её в режиме реального времени и на основе этого прокладывает траекторию движения. Благодаря своему электронному мозгу робомобиль сможет с одинаковой скоростью ехать назад или вперед, поворачивать просто не нужно, а если все же придётся, поможет рулевое управление со всеми поворотными колесами. Внутрь колеса встроены все детали, которые есть в обычном автомобиле, здесь есть привод, который обеспечивает движение машины, каждое колесо управляется по отдельности. Электромотор робомобиля прячется под ободом колеса, освобождая в кузове место для аккумуляторов, а главное, для пассажиров. Но из-за этого увеличивается вес колеса и чтобы оно не стало менее упругим ученые разработали принципиально новую электронную ходовую часть. В робомобиле человеку остаётся только наблюдать – как вождением занимается бортовой компьютер. Он контролирует машину на дороге и напрямую управляет четырьмя моторами внутри колес, значит, он рулит и разгоняется. Особенности этой машины в том, что водители не управляют ничем напрямую, нет рулевого колеса, нет педали тормоза, все обрабатывается через команды. С помощью устройства ввода они обрабатываются компьютером, а тот передает их колесам [6].

Читайте также:  Автомобиль для знака зодиака рыб

Электромобили имеют целый ряд преимуществ и недостатков.

? Снижение расходов на топливо. Стоимость бензина постоянно растёт и зачастую расходуется в больших количествах, что опустошает семейный бюджет, а расход на электроэнергию для подзарядки аккумулятора должен оказаться намного меньше этих расходов.

? Снижение загрязнения окружающей среды. Работающий двигатель электромобиля не выделяет вредных газов в окружающую среду. В идеале, чтобы снизить воздействие на окружающую среду, ее надо производить из чистых, возобновляемых источников энергии.

? Снижение шума. Электромобили способны обеспечивать тихий и плавный разгон, с более быстрым ускорением.

? Безопасность. Электромобили проходят те же процедуры тестирования, что и обычные автомобили. Таким образом, в случае столкновения сработают подушки безопасности, датчики столкновения отключат аккумуляторы, так что электромобиль остановится. Например, электромобиль Tesla Model S в 2013 году получил наивысший рейтинг безопасности из всех автомобилей, когда-либо протестированных в США [7].

? Собственно стоимость. Прошли те времена, когда электромобили стоили огромные деньги. Ранее батареи были очень дорогими, но при массовом производстве их стоимость снижается.

? Надежность. Из-за меньшего количества деталей и узлов, повышается надежность электромобиля и, как следствие, уменьшаются затраты на ремонт и обслуживание.

? Станции для подзарядки. В 2016 г. собираются открыть сеть станций для подзарядки в Москве, однако пока что инфраструктура находится в зачаточном состоянии.

? Электричество не бесплатно. Стоит обратить внимание на то, что у электромобилей разный расход электроэнергии.

? Короткий пробег и ограниченная скорость. Большинство электромобилей могут проходить примерно от 160 до 240 км без подзарядки. Хотя некоторые модели обещают пройти до 480 км без подзарядки.

? Время перезарядки. Для полной зарядки электромобиля требуется около 8–10 часов.

? Обычно они 2-местные. Электромобили не предназначены для перевозки всей семьи, это значит, что поездка втроем может оказаться уже неудобной.

? Замена батареи. Замена производится через каждые 3–10 лет.

? В зимнее время повышается расход энергии аккумулятора на обогрев салона, щеток и фар. Это приводит к тому, что пробег зимой сокращается на 30–50 % по сравнению с летним периодом [3].

Даже, невзирая на то, что имеется много нюансов в использовании электромобилей, следует верить, что в будущем они разрешатся. В первую очередь нужно задуматься о том, что главное достоинство электромобиля ? это снижение степени загрязнения окружающей среды. А в данный момент можно обратить внимание на гибриды электромобиля, которые могут позволить существенно минимизировать недостатки чисто электрических моделей.

Перспективы распространения электромобилей есть, и они широкие. Но любое производство аргументировано спросом. И здесь мы должны проявить максимальное понимание проблем и любовь к окружающей среде.

PricewaterhouseCoopers считает, что сдерживающими факторами роста рынка электромобилей в России являются:

1. Недостаточное внимание к экологическому аспекту со стороны государства и граждан.

2. Сравнительно низкая стоимость бензина и дизельного топлива.

3. Неразвитость инфраструктуры из-за большой территории и значительной протяженности дорог [9].

Езда на автомобиле с двигателем внутреннего сгорания скоро будет казаться вчерашним днем, электромобили ? средство передвижения будущего.

Новые модели автомобилей с электротягой способны конкурировать по мощности с авто с двигателем внутреннего сгорания. Компания Тесла Model S выпустила электросуперкар ? полноценный спортивный автомобиль на электротяге с разгоном до 100 км/ч всего за 6 секунд и максимальной скоростью более 200 км/ч, но его цена составляет 100000 долларов, что является роскошью для большинства людей.

Основными элементами электрооснащения автомобиля являются: электрический двигатель, контролер, аккумуляторные батареи.

Контролер выполняет функцию своего рода педали акселератора, на него подается ток с АКБ, а он передает на электродвигатель, считывая импульсы с потенциометров педали газа, и этими показаниями регулирует обороты электродвигателя.

Электродвигатель – сердце электромобиля, главная движущая система. Электродвигатель работает благодаря принципу электромагнитной индукции (явление, связанное с возникновением электродвижущей силы в замкнутом контуре при изменении магнитного потока), коэффициент преобразования электрической энергии в механическую составляет 85–95 % [4].

Хорошая управляемость автомобиля достигается вследствие связки колеса и мотора, мотор-колесо.

В большинстве электромобилей при торможении мотор способен вырабатывать энергию в режиме генератора, которая скапливается в аккумуляторных батареях и может использоваться в дальнейшем.

Самыми распространенными батареями на сегодняшний день являются свинцово-кислотные, так как они дешевые и пригодны для переработки. Для автомобилей с электротягой же больше подходят литий-ионные батареи, так как они очень энергоемкие, компактные и очень легкие. Однако эти батареи очень дорогие.

Такой автомобиль можно подзарядить от любой розетки, встроенное зарядное устройство будет обеспечивать максимально возможную быструю зарядку.

На сегодняшний день в мире существуют различные способы зарядки электромобилей:

? Способ зарядки электромобиля от бытовой электрической сети называется медленной зарядкой. Процесс зарядки аккумулятора длится 8 часов.

? Способ зарядки на специально оборудованных станциях называется быстрой зарядкой. В течение 20–30 минут аккумуляторная батарея заряжается почти полностью.

? Замена батареи на полностью заряженную, которая осуществляется только на зарядных станциях Tesla Supercharger, называется «горячей» заменой батареи, которую можно произвести за 2 минуты.

На сегодняшний день наибольшее количество быстрых зарядных станций находится в Японии, в США – наибольшее количество медленных.

Одна из областей наибольшего влияния на человечество, несомненно, экологичные источники энергии. Не стоит забывать и о том, что запасы угля и нефти конечны и через несколько столетий они иссякнут. Нам стоит позаботиться о будущем наших детей. Необходим альтернативный источник энергии для автомобилей. Получение электроэнергии – процесс, не наносящий вреда экологии нашей планеты. Преобразуя солнечную энергию, ветровую, волновую энергию, градиент-температурную энергию, приливную энергию, геотермальную энергию в электроэнергию.

Спрос на электромобили может существенно измениться в следующих случаях. Во-первых при росте цен на бензин в 10 раз в стране, то есть ухудшении ситуации с исчерпаемыми энергоресурсами (запасов нефти и газов) [5]. Во-вторых снижение цен на электромобили, которое будет возможна в результате технологического прорыва.

Сегодня анализируя состояние выпуска электромобилей, можно прийти к выводу, что производители стараются понижать цены на электромобили, то есть двигаются по второму пути развития. Почти все крупные производители электромобилей: Mitsubishi, Peugeot, Citroen, Nissan, Renault, Toyota, Kia, Honda, BMW ? планируют в ближайшие десять лет выйти на рынок или запустить производство новых моделей. АвтоВАЗ анонсировал появление электромобиля EL LADA.

Как прогнозирует Международное энергетическое агентство, мировой парк электромобилей к 2025 году увеличится практически в 200 раз, т.е. достигнет 200 млн единиц машин.

С увеличением количества электромобилей острее встает вопрос инфраструктуры. В Москве и Московской области в 2011 году уже запущен проект по развитию сети зарядных станций. Запуск сети зарядных станций в регионах будет целесообразен, когда электромобили будут доступны массовому потребителю. Хотя одна станция, позволяющая заряжать электромобиль за 20–30 минут, стоит немало – примерно 30 тысяч евро.

По этому вопросу еще в 2011 году вышло поручение Президента РФ: «…разработать программу государственного стимулирования поэтапной замены муниципального автотранспорта электромобилями и гибридными автомобилями отечественного производства, а также определить меры финансовой поддержки отечественных разработок, направленные на снижение цены гибридных автомобилей и электромобилей и предусматривающие в том числе предоставление субсидий и налоговых льгот отечественным компаниям…» [8].

Льготы, необходимые для пользователей:

? Государственная субсидия на покупку автомобиля.

? Бесплатная или частичная оплата парковки.

? Предоставление скидок на электроэнергию.

? Освобождение от транспортного налога.

Льготы для производителей:

В сфере производства электротранспорта Россия уступает на сегодняшний день технически развитым странам, таким как Япония, США и др. Вместе с тем проводимые рядом компаний научно-исследовательские и опытно-конструкторские работы дают надежду на создание электромобиля, соответствующего лучшим зарубежным образцам, из отечественных комплектующих. Интеллектуальный производственный потенциал позволяет России выполнить эту инновационную задачу.

Источник статьи: http://fundamental-research.ru/ru/article/view?id=39606

Научно- исследовательский проект Направление: Энергетика и электрификация. Тема: Электромобиль — транспорт будущего?

Работа посвящена изучению исследованиям современного автомобилестроения- автомобилям будущего на примере электромобиля. Результаты изучения позволят выяснить , будут ли автомобили вытеснены с рынка электромобилями. В проекте освещены основные характеристики сравнения электромобиля с обычным повседневным автомобилем. С какими проблемами столкнулись создатели электромобиля? Эти вопросы будут размещены в информационном буклете. Реализовался проект посредством сбора информации, подбора иллюстраций, создания презентации.

Просмотр содержимого документа
«Научно- исследовательский проект Направление: Энергетика и электрификация. Тема: Электромобиль — транспорт будущего?»

Областной конкурс научно- исследовательских проектов……..

Научно- исследовательский проект

Направление: Энергетика и электрификация.

Тема: Электромобиль — транспорт будущего?

Фёдоров Андрей Анатольевич-…….

Фоминцев Владимир Николаевич,

4.Список используемой литературы…………………………………….15 стр.

5. План исследований…………………………………………………… 16-19 стр.

» Электромобиль- автомобиль будущего»

Фоминцев Владимир Николаевич

ГАПОУ ТО «Тюменский техникум строительной индустрии и городского хозяйства», 1курс

Работа посвящена изучению исследованиям современного автомобилестроения- автомобилям будущего на примере электромобиля. Результаты изучения позволят выяснить , будут ли автомобили вытеснены с рынка электромобилями. В проекте освещены основные характеристики сравнения электромобиля с обычным повседневным автомобилем. С какими проблемами столкнулись создатели электромобиля? Эти вопросы будут размещены в информационном буклете. Реализовался проект посредством сбора информации, подбора иллюстраций, создания презентации.

» Электромобиль- автомобиль будущего»

Фоминцев Владимир Николаевич

ГАПОУ ТО «Тюменский техникум индустрии и городского хозяйства», 1курс

Систематизировать информацию о создании современных электромобилях и доказать , является ли электромобиль- автомобилем будущего?

1.Найти нужную информацию , используя Интернет- сайты, журналы, книги, видеоматериалы.

2. Изучить научную информацию по направлению – современный электромобиль «за» или «против»;

3.Провести анкетирование и анализ информационных материалов; .

5.Выпустить информационную брошюру «Электромобиль- автомобиль будущего. Оформить проект с помощью компьютерных технологий.

Выбор темы проекта

Электромобиль — транспортное средство, ведущие колеса которого приводятся от электромотора, питаемого аккумуляторными батареями. Этот современный вид транспорта называют автомобилем будущего. Технические характеристики электромобиля положительны, но существует и много недостатков. Для своей научной работы я выбрал именно эту тему так как считаю её актуальной . В настоящее время от автомобилей кроме радости много насущных проблем связанных с экологией, временем передвижения безопасностью, назначением.

Объект исследования— современное автомобилестроение будущего

Предмет исследования— электромобиль

*умение работать на компьютере, создание презентации с помощью компьютерных технологий, выпуск брошюры .

» Электромобиль- автомобиль будущего»

Фоминцев Владимир Николаевич

ГАПОУ ТО «Тюменский техникум индустрии и городского хозяйства», 1курс

Электромобиль — транспортное средство, ведущие колеса которого приводятся от электромотора, питаемого аккумуляторными батареями. Впервые появился он в Англии и во Франции в начале 80-х годов девятнадцатого века, то есть раньше автомобилей с двигателями внутреннего сгорания. Сконструированный И.В.Романовым в 1899 году кэб тоже был электрическим. Тяговый электродвигатель в таких машинах получал питание от батарей свинцовых аккумуляторов с энергоемкостью всего 20 ватт-часов на килограмм. В общем, чтобы питать двигатель мощностью в 20 киловатт в течение часа, требовался свинцовый аккумулятор массой в 1 тонну. Поэтому с изобретением двигателя внутреннего сгорания производство автомобилей стало стремительно набирать обороты, а об электромобилях забыли до возникновения серьезных экологических проблем. Во-первых, развитие парникового эффекта с последующим необратимым изменением климата и, во-вторых, снижение иммунитета многих людей вследствие нарушения основ генетической наследственности.

Данные проблемы были спровоцированы токсическими веществами, которые в достаточно больших количествах содержатся в отработавших газах двигателя внутреннего сгорания. Решение проблем состоит в снижении уровня токсичности отработавших газов, особенно окиси и двуокиси углерода, притом что объем производства автомобилей нарастает.

Ученые, проведя ряд исследований, наметили несколько направлений решения перечисленных задач, одной из которых является производство электромобилей. Это, по сути, первая технология, официально получившая статус нулевого выброса, и она уже представлена на рынке.

Чем привлекателен электромобиль, наверно, представляет каждый. В первую очередь, он почти не дает выброса вредных веществ. Ядовитых газов, попадающих в атмосферу при зарядке и разрядке аккумуляторных батарей, несравненно меньше, чем при работе двигателей внутреннего сгорания (ДВС). Чтобы отапливать электромобили зимой, на них устанавливают автономные обогреватели, потребляющие бензин или дизельное топливо. Но они, понятно, не загрязняют атмосферу так сильно, как ДВС.

Второе преимущество — простота устройства. Электродвигатель обладает очень привлекательной для транспортных средств характеристикой: на малых скоростях вращения у него большой крутящий момент, что очень важно, когда нужно тронуться с места или преодолеть трудный участок дороги. ДВС же развивает максимальный крутящий момент при средних оборотах, поэтому, если требуется большое усилие на малых, его приходится увеличивать с помощью коробки передач. Троллейбусы, например, в таком агрегате не нуждаются. Не требуется он и электромобилю, поэтому управлять им проще, чем автомобилем с механической коробкой передач.

Третье преимущество вытекает из второго. Электромобиль не требует столь тщательного ухода, как обычное авто: меньше регулировок, не потребляет много масла, проще система охлаждения, а топливная (если не считать отопитель) вообще отсутствует.

И все же электромобиль устроен не так просто, как может показаться: ему необходимы сложные преобразователи напряжения и много тяжелых и громоздких аккумуляторов, которые трудно разместить. Главный же недостаток, который сдерживает внедрение электромобилей, — малая энергоемкость батарей. Бак с бензином малолитражки весит около 50 кг, обеспечивая запас хода более полутысячи километров. Батареи весят обычно больше 100 кг (а то и несколько сотен), а пробег не превышает 100 км, причем при движении с небольшой скоростью.

Вопреки бытующему мнению о высокой экономичности аккумуляторных электромобилей, анализ показывает, что химическая энергия топлива, сжигаемого на электростанциях, используется для движения транспортного средства всего на 15% и менее. Это происходит из-за потерь энергии в линиях электропередачи, трансформаторах, преобразователях, зарядных устройствах для аккумуляторов и самих аккумуляторах, электромашинах, как в тяговом, так и в генераторном режимах, а также в тормозах при невозможности рекуперации энергии. Для сравнения, дизельный двигатель на оптимальном режиме преобразует в механическую энергию около 40% химической энергии топлива. При большом распространении аккумуляторных электромобилей, а особенно с учетом сказанного, им просто не будет хватать электроэнергии, вырабатываемой электростанциями мира. Не следует забывать, что суммарная установочная мощность двигателей всех автомобилей намного превышает мощность всех электростанций мира.

Проблемы снимаются при питании электромобилей от так называемых первичных источников электроэнергии, вырабатывающих энергию непосредственно из топлива. В первую очередь, такими источниками являются топливные элементы (ТЭ), потребляющие кислород и водород. Кислород можно забирать из воздуха, а водород, в принципе, можно запасать в сжатом или сжиженном виде, а также в так называемых гидридах. Но реальнее его получать из обычного автомобильного топлива прямо на электромобиле с помощью конвертора. Эффективность топливных элементов несколько снижается, но зато не меняется вся инфраструктура топливозаправочного хозяйства. КПД топливных элементов при этом все равно очень высок – около 50%.

Однако электромобиль с питанием от топливных элементов не лишен общего недостатка – высокой массы тяговых электродвигателей транспортных средств, рассчитанных как на максимальные мощность и крутящий момент, так и на максимальную частоту вращения. При этом добавляются и специфические недостатки, характерные для топливных элементов. Это, во-первых, невозможность рекуперации энергии при торможении, так как топливные элементы не являются аккумуляторами, то есть они не могут заряжаться электроэнергией, а во-вторых, низкая удельная мощность топливных элементов.

При огромной удельной энергии топливных элементов (порядка 400. 600 Вт·ч/кг), удельная мощность при экономичном разряде не превышает 60 Вт/кг. Это делает массу топливных элементов для реальных мощностей, необходимых автомобилям, очень большой. Например, для электромобиля с максимальной потребной мощностью 100 кВт и электробуса с максимальной потребной мощностью 200 кВт, это соответствует массам топливных элементов 1670 и 3330 кг, соответственно. Если прибавить массы тяговых электродвигателей, примерно равные 150 и 400 кг, соответственно, то получаются массы силовых агрегатов, совершенно неприемлемые для легкового электромобиля, и требующие пятитонного прицепа для электробуса.

Делаются попытки снижения массы топливных элементов с использованием в качестве промежуточных источников энергии конденсаторных накопителей энергии, обладающих высокой удельной мощностью. Однако, и этот путь недостаточно эффективен, так как лучшие современные конденсаторные накопители, доступные для автомобильной техники, имеют удельные энергетические показатели около 0,55 Вт·ч/кг и 0,8 Вт·ч/литр. В таком случае для накопления всего 2 кВт·ч энергии (это значение рекомендовано специалистами как для электромобилей, так и для электробусов), потребуется около 3000 кг или 2,5 м 3 конденсаторов, что нереально. Меньшие значения запасаемой энергии существенно снижают динамические качества машины. Кроме того, при коротком замыкании мощные конденсаторы могут загореться, что очень нежелательно для транспорта. Гораздо эффективнее использование в качестве промежуточного накопителя энергии супермаховика, соединенного с обратимой электромашиной.

Супермаховик – маховик, изготовленный навивкой из волокон или лент на упругий центр. Удельная энергия супермаховика на порядок больше значений данного параметра для лучших монолитных маховиков, к тому же он обладает свойством безопасного разрыва, не дающего осколков.

Такие схемы осуществлены в новейших опытных образцах гибридных электромобилей фирм Mechanical Technology Inc.(США), EDO Energy (США), и известной Ливерморской национальной лаборатории (LLNL, США). Удельная энергия супермаховиков из кевлара и графита, достигающая сотен Вт·ч/кг, снижает его необходимую массу до нескольких килограммов (при удельной энергии 200 Вт·ч/кг, для накопления 2 кВт·ч потребуется супермаховик массой всего 10 кг). Однако электромашина накопителя, необходимая здесь помимо тягового двигателя, и рассчитанная на максимальную мощность и поэтому весьма тяжелая, снижает эффективность этой схемы. К тому же она, как и тяговый двигатель должна быть обратимой (и мотором, и генератором), что дополнительно усложняет привод.

Оригинальную схему гибридного силового агрегата с маховичным накопителем и электромеханическим приводом предложила, изготовила и испытала фирма «BMW» (Германия). Несомненным преимуществом данного технического решения является наличие только одной электромашины, что снижает массу и приближает его к автомобильным схемам (рис. 1.1). Тип маховика фирма «BMW» в отчете не уточняет, поэтому используемый накопитель условно назван просто «маховичным».

Рисунок 1.1. Схема гибридного силового агрегата с маховичным накопителем и электромеханическим приводом фирмы «BMW» (Германия):
1 – источник тока; 2 – система управления; 3 – обратимая электромашина; 4 – дифференциальный механизм; 5 – мультипликатор; 6 – маховичный накопитель; 7 – главная передача

Источник тока 1 через преобразователи и систему управления 2 связан с обратимой электромашиной 3, рассчитанной на максимальную мощность электромобиля. Электромашина 3 через сложный дифференциальный механизм 4 с мультипликатором 5 связана с маховиком 6 накопителя и главной передачей 7. В результате масса источника тока 1, например, топливного элемента, может быть выбрана исходя из удельной энергии, а не удельной мощности, что снижает ее для электромобиля и электробуса с пробегом, соответственно, 400 и 600 км до 100. 150 и 700. 1000 кг. Это вполне приемлемо для данных транспортных средств.

Однако непременным недостатком всех схем с электроприводом остается наличие тяжелого и сложного обратимого электродвигателя. Это отражается на экономичности привода и его массе, включая систему преобразователей тока. Мощная электромашина неэкономична при работе на малых мощностях, характерных для разгона (зарядки) маховичного накопителя. Кроме того, в схеме, помимо главной передачи, присутствует сложный по конструкции и управлению дифференциальный механизм с мультипликатором и тремя системами фрикционного управления (муфтами или тормозами), что усложняет и удорожает привод.

Новая концепция электромобиля, предложенная проф. Н.В. Гулиа, состоит в максимальном приближении и унификации устройств электро- и автомобиля. Это позволяет предельно упростить и уменьшить массу силового агрегата транспортного средства, увеличить его КПД и эффективность рекуперации энергии, а также сделать возможным использование существующих шасси автомобилей и автобусов для установки силовых агрегатов электромобилей и электробусов. Последнее обстоятельство должно существенно удешевить машины, в максимальной степени унифицировать их производство с возможностью оперативно менять соотношение количества машин различных типов и программу их выпуска. Кроме того, по желанию заказчика, транспортное средство может быть оснащено как источником механической энергии (обычным или гибридным тепловым двигателем), так и электрической (топливные элементы с супермаховиком), с установкой заменяемых агрегатов в том же двигательном отсеке при полном сохранении всей трансмиссии.

Такая трансмиссия должна быть рассчитана на перспективу, и включать уже не ступенчатую, а бесступенчатую коробку передач. Такие коробки передач уже достаточно широко выпускаются на основе ременных вариаторов с различными типами ремней («тянущих» и «толкающих»), и используются на автомобилях фирм Nissan, Honda, Fiat, Subaru и др.

Московский государственный индустриальный университет (МГИУ) в содружестве с АМО ЗиЛ ведет работы по разработке бесступенчатой коробки передач на основе нового планетарного дискового вариатора. Бесступенчатая коробка передач на основе дискового вариатора новой концепции может использоваться как на легковых, так и на грузовых автомобилях (в том числе и седельных тягачах) и автобусах.

Новый вариатор, рассчитанный на высокие значения крутящего момента достаточно низкооборотных двигателей автобусов, дает возможность применить новую концепцию электромобиля на мощных электробусах. Следует заметить, что для данной схемы не исключается использование бесступенчатой коробки передач любого типа, имеющей достаточную экономичность, малые габариты и массу, соизмеримые с существующими коробками передач.

Схема электромобиля новой концепции представлена на рис. 1.2.

Рисунок 1.2. Схема электромобиля новой концепции

Как и в других гибридных схемах электромобилей, источник электроэнергии выбирается исходя из критерия удельной энергии, что при исключительно высоком значении этого параметра обеспечивает малые массы, а также объемы топливных элементов. В данной схеме в качестве промежуточного источника энергии использован супермаховик с теми же энергетическими и массовыми параметрами, что и в других гибридных схемах с маховичным накопителем.

Принципиальным отличием данной концепции электромобиля от других гибридных схем является отбор мощности от источника электроэнергии необратимой электромашиной – специализированным разгонным электродвигателем малой мощности, соответствующей эффективной удельной мощности источника электроэнергии. Для упомянутых выше легкового электромобиля и электробуса это соответствует 15 и 20 кВт. Благодаря высокой частоте вращения разгонного электродвигателя – до 35000 об/мин для легкового электромобиля и 25000 об/мин для электробуса, что соответствует частоте вращения разгоняемых супермаховиков для накопителей этих машин, масса их весьма мала, соответственно 15 и 30 кг (это обычные показатели для отечественных конструкций авиационного назначения).

Источник энергии и разгонный электродвигатель могут быть объединены в один энергетический блок, сходный по массе и габаритам с демонтируемым с шасси двигателем и его системами. Топливный бак и система питания в принципе могут быть сохранены с добавлением конвертора для получения водорода из топлива.

Таким образом, в энергетическом блоке химическая энергия топлива преобразуется в механическую в виде вращения вала, совершенно так же, как и у теплового двигателя. Функцию сцепления выполняет выключатель, подключающий электромотор к источнику энергии.

Таким образом, по желанию заказчика в двигательный отсек может быть установлен любой преобразователь химической энергии топлива в механическую – тепловой двигатель или новый энергетический блок. Далее все, как и в обычном автомобиле, вал энергетического блока соединяется с коробкой передач, в данном случае бесступенчатой. Такая коробка передач уже в недалеком будущем заменит менее эффективные ступенчатые даже на обычных автомобилях. В результате мы получаем электромобиль новой концепции в максимальной степени унифицированный с обычным автомобилем.

Каковы же преимущества электромобиля новой концепции? По сравнению с автомобилем это несравненно более высокая эффективность использования топлива и экологическая безопасность. По сравнению со средним КПД преобразования химической энергии в механическую – порядка 10. 15% у тепловых двигателей на автомобилях (не следует путать с КПД тепловых двигателей на оптимальном режиме – 30% у бензиновых двигателей и 40% у дизельных), этот КПД у топливных элементов с конвертором – 50%, а у кислородно-водородных топливных элементов – 70%. Вредные выхлопы у топливных элементов практически отсутствуют. Примерно такие же преимущества у электромобилей новой концепции по сравнению с аккумуляторными электромобилями, с той разницей, что вредные выбросы последних имеют место не на самой машине, а на электростанциях.

По сравнению с наиболее передовыми конструкциями гибридных систем электромобилей с топливными элементами и маховичными накопителями, например, схемой предложенной и осуществленной фирмой «BMW», преимуществом новой концепции является меньшие габаритно-массовые показатели и высший КПД электромашины. Это обусловлено тем, что в новой концепции электромашина не универсальная, обратимая, а узко специализированная, разгонная, загруженная практически постоянной мощностью, почти на порядок меньше максимальной и при высоких частотах вращения. Второе преимущество заключается в отсутствии сложного дифференциального механизма с тремя фрикционными муфтами или тормозами, переключающими режимы. Третье преимущество состоит в том, что процесс регулирования частот вращения и моментов от супермаховика до ведущих колес осуществляется не электроприводом, а механическим вариатором, имеющим высший КПД. В особенности это касается процесса рекуперации энергии при торможении, в результате которого кинетическая энергия машины переходит в супермаховик. Ни по частотной полноте передачи этой энергии, ни по КПД этого процесса, электротрансмиссия не идет ни в какое сравнение с механическим вариатором. И последнее преимущество, о котором уже говорилось – почти традиционная автомобильная схема и соизмеримые габаритно-массовые показатели нового энергетического блока с существующими двигателями, позволяют легко заменять один вид источника энергии на другой, получая при этом как автомобиль (с обычной или гибридной схемой двигателя), так и гибридный экономичный и динамичный электромобиль новой концепции.

На рис. 1.3 представлена схема городского электробуса новой концепции. Эта схема предоставляет устройству большую гибкость, чем в изображенной на рис. 1.2 структурной схеме.

Рисунок 1.3. Схема городского электробуса новой концепции:
1– источник тока; 2 – электродвигатель; 3 – механизм реверса; 4 – коробка отбора мощности; 5 – планетарный дисковый вариатор; 6, 7 – карданные передачи; 8 – главная передача; 9 – коническая зубчатая передача; 10 – супермаховичный накопитель

Здесь блок супермаховичного накопителя 10, снабженный своим редуктором 9, расположен независимо от остальных агрегатов и мягко подвешен на раме для уменьшения и без того небольших гироскопических усилий при горизонтальном расположении супермаховика. С помощью коробки отбора мощности 4 и карданных передач 7 этот блок может связываться с вариатором 5 как независимо, так и совместно с электродвигателем 2. Этот электродвигатель может быть соединен с вариатором 5 и независимо от супермаховика, и играть роль полноценного тягового двигателя, в основном, на стационарных режимах движения. Несмотря на то, что электродвигатель 2 в этом случае несколько увеличивается по мощности и массе, энергоемкость супермаховичного накопителя может быть существенно снижена, реально до 0,5 кВт·ч. Это позволяет изготовлять супермаховик из такого стабильного и сравнительно дешевого материала, как стальная углеродистая проволока. Выход из строя (разрыв) супермаховика настолько безопасен, что тяжелого защитного кожуха, существенно превышающего по массе сам маховик, и необходимого при маховике из углепластиков, не требуется. Вариатор позволяет тяговому электродвигателю работать в эффективном диапазоне крутящих моментов и частот вращения, передавая только часть мощности, необходимой для движения электробуса, что благоприятно для его работы.

Но как бы там ни было — электромобили пользуются спросом. Более того, есть места, где они совершенно вне конкуренции. Скажем, поля для популярной в мире игры в гольф. Инвентарь и обслуживающий персонал перемещают на электромобилях упрощенной конструкции, порой без крыши, дверей, с облегченным, часто укороченным, кузовом, без систем безопасности — всего того, что заметно увеличивает массу автомобилей. Упрощенные машины хороши и для перевозок в закрытых помещениях: на складах, в цехах, где вредные выбросы нежелательны. Широко используют такие электромобили-тележки для перевозки туристов на курортах, в национальных парках, но здесь им труднее конкурировать с автомобилями.

Полноразмерные машины, предназначенные для движения по улицам городов, приживаются с трудом, хотя не исключено, что в скором будущем ситуация может измениться. А причину этому нужно искать. в климате американского штата Калифорния.

Выхлопные газы автомобилей под воздействием солнечных лучей образуют особо ядовитые вещества, так называемый смог. Для перенасыщенного машинами солнечного штата это — проблема номер один. Поэтому калифорнийские нормы токсичности выхлопа традиционно строже, чем в других штатах США, не говоря уже о Европе. Теперь здесь принят закон о постепенной замене автомобилей электромобилями: в 2003 году их должно быть — 10% от общего числа машин, а в 2010-м — 15%.

Многие ведущие автомобильные фирмы работают над электромобилями, тем не менее на выставках чаще увидишь машины малоизвестного происхождения. В выборе двигателя мнения конструкторов расходятся: используют и моторы постоянного тока, и переменного, например, асинхронный со специальными преобразователями и сложной системой регулирования. Напряжение питания также различно. Явное предпочтение отдают никель-кадмиевым батареям и свинцовым, в которых используется не жидкий электролит, а гель. Иногда применяют системы жидкостного охлаждения двигателей и поддержания теплового режима аккумуляторов.

Самый популярный в мире электромобиль изготовляют. в Польше. Уже выпущено более 200 тысяч штук. Электромобили «Мелекс» — упрощенного типа, на 2, 4 и 6 мест, рассчитаны на индустрию спорта и развлечений (назовем хотя бы тот же гольф), для складских работ, как цеховой транспорт. При собственной массе около 880 кг полезная нагрузка — 320, а с прицепом — более 900. Запас хода — 70 км. Максимальная скорость — до 23 км/ч — выдает назначение машины.

Другая фирма из Восточной Германии «Транспорт-Системтехник» создала 10 прототипов такси. Пятиместная машина с пластмассовым кузовом весит всего 600 кг, развивает 80 км/ч, имеет запас хода 140 км. Батареи — никель-металлогидридные. Конструкторам удалось сделать относительно просторную внутри машину при длине всего 2,5 м. САКСИ (то есть такси из Саксонии) обещают выпускать серийно через два года .

Рисунок 1.4. САКСИ – такси из Саксонии.

В Японии автомобильная компания «Honda» финансирует проект создания парка сдаваемых в прокат малогабаритных электрических и «гибридных» машин, включающий новую технологию их эксплуатации. Осуществление этого проекта, получившего название «Intelligent Community Vehicle System» («Региональная интеллектуальная транспортная система») — ICVS, по замыслу разработчиков, позволит существенно снизить вредное воздействие транспорта на окружающую среду, уменьшить вероятность заторов и улучшить условия парковки в зонах с высокой интенсивностью движения.

City Pal представляет собой малогабаритный переднеприводной электромобиль размерами 3210 х 1645 х 1645 мм с синхронным двигателем на постоянных магнитах. Его максимальная скорость 110 километров в час, запас хода на полностью заряженных аккумуляторах 130 километров. Несмотря на небольшие размеры, в электромобиле достаточно просторный для водителя и пассажира салон и багажник большой вместимости. City Pal оснащен кондиционером и современной навигационной системой. Кроме того, в нем есть оборудование для автоматического (беспилотного) управления и зарядки. Фото City Pal представлено на рис.1.5.

Рисунок 1.5. Двухместный электромобиль City Pal.

Сверхминиатюрный одноместный мини-электромобиль Step Deck предназначен для езды в густонаселенном городе. По всему периметру кузова машины снаружи установлены подножки-бамперы. Благодаря такой конструкции Step Deck можно парковать буквально вплотную к другим машинам в самых стесненных условиях. Габаритные размеры мини-электромобиля 2400 х 1185 х 1690 мм. На стоянке, предназначенной для одного обычного легкового автомобиля, можно разместить четыре такие машины. Комбинированная силовая установка с приводом на заднюю ось состоит из четырехтактного ДВС объемом 49 см 3 с водяным охлаждением и синхронного электромотора с постоянными магнитами, что позволяет развивать скорость до 60 километров в час (рис.1.6).

Рисунок 1.6. Городской одноместный мини-электромобиль Step Deck.

Электромобили фирмы «Honda», задействованные в системе ICVS, взять напрокат не так просто. Для этого сначала следует приобрести специальную магнитную карточку IC. С ее помощью на терминалах ICVS можно выбрать наиболее подходящий для конкретной поездки один из четырех видов экипажей, оформить его аренду, вернуть экипаж на стоянку и оплатить прокат наличными или с банковского счета. Помимо этого карточка IC используется для запуска двигателя вместо обычных автомобильных ключей. Оформлением проката электромобиля занимается сам клиент практически без участия служащих терминала. Удобно и то, что не обязательно возвращать экипаж на ту же стоянку, на которой его арендовали, можно оставить или поменять электромобиль на любом другом терминале ICVS.

Контрольный центр ICVS получает всю оперативную информацию о месте нахождения того или иного экипажа по специальной радиосвязи. В случае необходимости оператор, используя внутреннюю радиосвязь и широкоугольные лазерные радары, может в автоматическом режиме направить в нужное место до четырех «беспилотных» экипажей. Для этого электромобили оснащены магнитными и ультразвуковыми сенсорами, взаимодействующими с индукционными кабелями, проложенными под покрытием терминала. Экипажи могут заезжать на стоянку, выезжать с нее и парковаться по команде из контрольного центра также без участия водителя. На терминалах ICVS предусмотрена автоматическая зарядка аккумуляторных батарей всех электромобилей.

Как видим, разработками электромобилей будущего занимаются многие страны. Россия тоже не исключение. В Москве прошел экопробег двух десятков самых разных по классу электромобилей под красивым названием «Изумрудная планета». Организаторами выступили компания «Экомоторс», агенство коммуникации Constellation при поддержке Департамента развития новых территорий и Департамента транспорта и развития дорожно-транспортной инфраструктуры Москвы. Маршрут проходил от центра «Красный Октябрь», который расположен напротив храма Христа Спасителя на другом берегу Москва-реки до экопарка «Горчаково», что на территории Новой Москвы, в 25 км от МКАД. Дистанция вроде невелика, но не забудем, что проехать ее надо было «на батарейках» и с приличной скоростью, чтобы не отставать от основного потока. Собственно, пробег был второй частью программы. Сначала многочисленные посетители и журналисты получили возможность вживую и не спеша осмотреть всю гамму электротехники, покататься на электроскутерах, разнообразных электровелосипедах, сегвеях и прочей мелочи. Присутствовали знаменитости из сферы политики, искусства и бизнеса. Поднимались экологические темы не только в «автомобильном» смысле, но и более широко. В частности, консультанты компании «Сфера экологии» рассказывали, как правильно сортировать мусор и организовать сбор полезных отходов дома и на работе. Было весело, звучала живая музыка, и даже то и дело накрапывающий дождик не портил впечатления. Были представлены электромобили компаний Mitsubishi, Nissan, Renault, отечественного «Экомоторса». Особенно заметны были итальянские электромобили скутеры Estrima Biro и, разумеется гвоздь программы – английский Weverly 1913 г. выпуска. Деревянно-кожаный «ветеран», больше похожий на карету, в пробеге, разумеется, не участвовал, но очень даже мог! Он вполне на ходу, и только лишь аккумуляторы у него, хоть как и положено, свинцово-кислотные, но современные. Старт пробегу дала эколог, лидер экологической инициативы «Изумрудная планета» Елена Шаройкина. Через час с небольшим все участники без потерь добрались до финиша, где непринужденное общение и изучение техники продолжились. Думается, что цель пробега – привлечь внимание власти и широкой общественности к экологическим проблемам мегаполиса и их решению с помощью электротранспорта – была достигнута.

Электромобиль отличается от автомобиля только силовой установкой: вместо ДВС и топливного бака у него электрохимический источник электроэнергии и тяговый электродвигатель. Любой электродвигатель состоит всего из двух основных частей: неподвижного статора и установленного внутри него на подшипниках ротора. Принцип действия прост: бегущее по кругу электромагнитное поле статора действует на ротор, заставляя его вращаться. Электродвигателю не требуются фильтры и свечи, стартеры и глушители. Двигатель может быть один, приводящий два колеса, возможна установка двух моторов, каждый из которых приводит свой ведущий мост. Третий вариант – индивидуальный привод каждого колеса. В этом случае становится не нужен дифференциал, да и трансмиссия как таковая вообще. Двигатель с планетарным редуктором можно разместить прямо в колесе, и тогда получается компактный агрегат под названием «мотор-колесо», или «хаб» (hub). Современные автомобильные тяговые электродвигатели – это очень легкие и малогабаритные синхронные агрегаты с мощными постоянными магнитами, высокочастотной электронной системой управления и принудительным воздушным или водяным, но чаще масляным охлаждением (масло здесь только охлаждает и практически не требует замены). Двигатели эти работают на трехфазном переменном токе напряжением от 70 до 110 В. Напряжение, как правило, ограничено нормами безопасности, но оно может быть и выше (330 В у Mitsubishi i-MiEV). Достаточно сказать, что такой агрегат размерами и массой, как у мотора от стиральной машины, может развивать около 100 (ста!) кВт при 8–20 тыс. об./мин. Электромобили практически беззвучны, поскольку их двигатели не имеют скользящих контактов-щеток и коллектора, вызывающих наибольший шум (вспомните, как невыносимо визжит коллекторная электродрель). Собственно говоря, кроме подшипников и шестерен редуктора изнашиваться здесь просто нечему, поэтому агрегаты эти очень долговечны и не требуют обслуживания. В отличие от ДВС, компактный и незаметный электромотор, можно сказать, является фактически агрегатом трансмиссии, потому как встроен в нее. Кстати, коробка передач электромобилю не нужна по причине того, что максимальный момент электродвигатель развивает при минимальной частоте вращения. Электродвигатель не надо прогревать, он всегда готов к работе на полную мощность, и холостой ход ему не нужен: нажал педаль, и поехали. Источником электроэнергии служат емкие и легкие никель-кадмиевые или литийионные (литий-полимерные) аккумуляторные батареи. Eмкость батарей, т. е. количество запасенной в них энергии, измеряется в ампер-часах (Ач). Сегодня лучшие из таких источников способны обеспечить пробег машины около 150–200 км на экономичной скорости около 70–80 км/ч. Если скорость увеличить, то пробег будет меньше, и наоборот. Но прогресс не стоит на месте, медленно, но верно поднимаются оба параметра. Полная зарядка батарей с нуля занимает пока 5–9 ч, но имеет устойчивую тенденцию к сокращению. Сбережению энергии помогает система управления, которая позволяет осуществлять режим рекуперации. Когда машина тормозит или спускается с горы, двигатель становится генератором и возвращает драгоценную энергию в аккумуляторы. Специальные зарядные станции позволяют осуществить экспресс-зарядку до 80 % емкости батарей всего за полчаса. Батареи выдерживают по 2–3 тыс. циклов зарядки-разрядки, что вполне достаточно для многих лет эксплуатации машины. И все бы тут хорошо, да что-то нехорошо… Электромобиль вечно молод (хотя ему на самом деле уже больше ста двадцати лет!) и, разумеется, не лишен недостатков. Прежде всего давайте задумаемся, а откуда, собственно, заряжается его аккумулятор?

Из розетки, вы совершенно правы. А в эту самую розетку электрическая энергия поступает от электростанции, которая дымит и гудит где-то за тридевять земель. Почему дымит? А потому, что большинство электростанций во всем мире работают все на том же старом добром углеводородном топливе: газе, мазуте, угле, горючих сланцах, даже торфе. Да хотя бы и на «экологическом» уране! Природе и трезво мыслящим людям не намного легче от закопанных под землю на века многих тысяч бочек с отработанными радионуклидами. Цунами и прочие всякие землетрясения тоже никто еще не отменял. Воды рек, морских приливов, ветер и солнце добавляют сегодня слишком мало по-настоящему чистой энергии в общий мировой баланс. Можно сказать, что у тысячи электромобилей есть где-то одна общая выхлопная кирпичная труба. Вся мировая энергетика пока что экологически несовершенна, а значит, и электромобиль не может быть экологически чистым!

КПД самого электромотора высок, это верно, но вся энергия растеряется по пути к нему. В то же время современный бензиновый двигатель на оптимальном режиме работы использует около 28–30 % этой энергии, а КПД хорошего дизеля зашкаливает за 40 %! К тому же весит электромобиль на две-три сотни кило больше бензинового аналога и стоит на сегодня примерно втрое больше. Такая вот получается «экономия». Когда сотни тысяч электромобилей разом «присосутся» к своим розеткам, пусть даже ночью, хватит ли вообще силенок у существующей сети электростанций? Не хватит, это точно. Ведь машина мощностью в полсотни киловатт – это не кофемолка какая-нибудь и даже не утюг! Новые же электростанции вызовут дополнительные загрязнение атмосферы и выделение все того же СО2. Кроме того, электроэнергия, пусть даже и самая что ни на есть экологическая, совсем бесплатной, к сожалению, никогда не бывает.

Да, пока электромобиль в эксплуатации будет заметно выгоднее автомобиля. Но тарифы на электроэнергию, и это уж точно ни для кого не секрет, подвержены росту ничуть не меньше цен на бензин. Не будут ли они пересмотрены в большую сторону, когда электротранспорт по-настоящему выйдет на дороги? Выходит, что не настолько он «зеленый» и выгодный…

Следует напомнить и о том, что никто пока толком ничего не знает о влиянии на человеческий организм мощного высоко- частотного электромагнитного излучения, которое неизбежно будет действовать на водителя и пассажиров электромобиля и которое ничем не экранируется. Единственное, в чем сходятся все, – оно так или иначе мягко говоря, не полезно.

Источник статьи: http://multiurok.ru/files/nauchno-issliedovatiel-skii-proiekt-napravlieniie.html

Оцените статью