Коэффициент трения колеса автомобиля с покрытием

Сопротивление качению

Сопротивление качению зависит от массы автомобиля и коэффициента трения качения. Масса автомобиля при этом оказывает первостепенное влияние на величину сопротивления качению. Большая масса проявляется неблагоприятно в любом случае, если мы стремимся к экономии энергии, то уменьшение массы автомобиля является одной из первостепенных задач.

Масса проявляется в виде силы, прижимающей автомобиль к земле. Передвижению препятствует сила, которая зависит от коэффициента трения качения между автомобилем и поверхностью дороги. Здесь имеется возможность экономить определенную энергию. Сила сопротивления качению автомобиля Pf рассчитывается по формуле

где Q – нормальная нагрузка; f – коэффициент трения качения.

Коэффициент сопротивления качению

Ниже приведены значения коэффициента f , которые действительны для качения шины колеса по поверхности дороги с различным покрытием и для других движителей:

Значения коэффициента трения качения f для различных движителей

Покрытие Значение f
Колесо с шиной
Асфальтобетон 0,01
Бетон, мелкая брусчатка 0,015
Гравийное укатанное с дёгтевой пропиткой 0,02
Щебёночное 0,025
Грунтовое укатанное 0,05
Грунтовое размокшее 0,1
Пахота 0,15-0,35
Гусеничный движитель
Пахота 0,07-0,15
Укатанный снег 0,15
Рыхлый снег 0,3
Стальное колесо на рельсе 0,001-0,002
Примечание. Значения первых семи коэффициентов зависят также от давления в шине и ее типа, о чем будет сказано ниже.

В приближенных расчетах можно допускать, что коэффициент сопротивления качению с изменением скорости автомобиля не меняется. Наименьшее сопротивление качению имеет стальное колесо на рельсе, наибольшее – гусеничный движитель на рыхлом снегу. Чем меньше деформация поверхности, тем меньше сопротивление качению.

Читайте также:  Самые компактные автомобили мира

Сопротивление качению на неровной дороге

При движении по неровной дороге сопротивление качению зависит от жесткости амортизирующего элемента.

Наезд колеса на препятствие

Если на поверхности дороги возникает препятствие высотой h (см. рис. слева) и автомобиль наезжает на него с малой скоростью, то он может остановиться. На рисунке масса автомобиля представлена грузом М , прикрепленным к оси колеса через пружину F . Предположим, что масса М жестко соединена с осью. В этом случае для преодоления препятствия необходима такая вертикальная сила V , которая способна поднять массу М на высоту h . Эта сила может обеспечиваться, например, кинетической энергией автомобиля при движении. Чтобы автомобиль мог продолжать движение, необходимо, чтобы его кинетическая энергия была большей, чем требуется для поднятия автомобиля на высоту h . Необходимая величина вертикальной силы зависит от угла наезда α и рассчитывается по формуле

Время подъема определяется скоростью автомобиля, а форма препятствия определяет процесс изменения скорости и ускорения. На вершине твердого препятствия скорость массы М не будет равна нулю, и колесо отскочит от препятствия. Однако гравитационная сила остановит массу М и вернет ее на землю путем свободного падения. Энергия горизонтальной силы Н будет затрачена на перемещение колеса на высоту препятствия, но при отскоке колеса эта сила уже не действует и, следовательно, не влияет на увеличение сопротивления качению автомобиля [2].

Если масса М опирается на пружину F и колесо снабжено упругой шиной, то исчезает необходимость подъема колеса и массы М на высоту препятствия h . При благоприятном отношении неподрессоренной массы колеса и подвески к подрессоренной массе М колесо не отскочит от препятствия, и часть энергии, аккумулированная в сжатой пружине и шине, после преодоления препятствия вернется и передвинет автомобиль вперед. Однако значительная часть энергии за счет внутреннего трения в амортизирующих элементах потеряется, превратившись в теплоту. Достаточно мягкая подвеска колес может уменьшить потери энергии при переезде через неровность.

Сопротивление качению на деформируемом покрытии

На дороге с хорошим покрытием действует правило: жесткое колесо на твердом, малодеформируемом покрытии обеспечивает наименьшие потери, обусловленные сопротивлением качению. Если неровности имеют большой размер, то увеличение жесткости колеса и амортизирующих элементов вызывает рост сопротивления качению. В этом случае выгодным является использование мягкой шины больших размеров и нежестких амортизаторов. Шина больших размеров с мягкой боковой поверхностью и низким давлением сама амортизирует мелкие неровности, так что и неподрессоренная масса будет испытывать колебания весьма малой амплитуды, которые хорошо гасятся мягкой подвеской. Небольшое давление в шине увеличивает площадь ее контакта с поверхностью дороги, что уменьшает глубину погружения колеса в мягкое покрытие и соответственно образует колею меньшей глубины.

Коэффициент трения качения жёсткого колеса на деформируемом покрытии имеет иной характер, чем на твердой поверхности, и определяется по формуле

где h – глубина погружения колеса в покрытие, мм; D – диаметр колеса, мм.

В этом случае давление воздуха в шине может влиять противоположно тому, как это имеет место на твердом покрытии, поскольку из-за малого погружения колеса в покрытие при низком давлении в шине коэффициент сопротивления качению будет меньше, чем при высоком. После того как автомобиль с такими шинами выйдет с бездорожья на шоссе, в них необходимо увеличить давление, иначе боковые поверхности шин при большом прогибе будут сильно разогреваться. На некоторых автомобилях используется специальное оборудование, позволяющее изменять давление в шинах, не прекращая движения.

Читайте также

Механический КПД отражает соотношение между индикаторной и эффективной мощностью двигателя.

Источник статьи: http://icarbio.ru/articles/soprotivlenie-kacheniu.html

Всё о коэффициенте сцепления шин с дорогой

Как шины влияют на безопасность, когда вы ведете машину по шоссе? Какие факторы помогают предотвратить занос и позволяют контролировать ваш автомобиль при повороте и остановке?

Вопросы безопасности на дорогах включают не только выбор правильной резины, но и учитывают фактор дорожного покрытия, технические характеристики транспортного средства ТС, другие факторы о которых узнаете ниже.

Измерение коэффициента сцепления дорожного покрытия по ГОСТ 50597-93

Исследования проводились динамометрическим приборомПКРС-2, результаты сведены в таблицу, где указаны виды дорожного покрытия и их состояние в зависимости от погодных и климатических условий. С момента ввода этих коэффициентов прошло много лет. Изменились технологии строительства дорог, в частности контактная поверхность дорожного покрытия. Данные таблицы надо рассматривать, как ориентировочные.

Сцепление шин с дорогой

Совершенно ясно, что эти коэффициенты не есть величина постоянная, а зависят от многих факторов:

  • тип дорожного полотна, качество состояния;
  • состояние шин транспортного средства их скоростные, нагрузочные и другие характеристики, входящие в маркировку;
  • скорость движения ТС;
  • наличие веществ, снижающих сцепление в зоне контакта поверхности колеса и покрытия (грязь, пролитые ГСМ);
  • уклоны и опасные закругления автомобильной дороги.

Коэффициент сцепления между шиной и дорогой является одним из важных факторов, влияющих на безопасность дорожного движения. Состояние деформации шины различается в зависимости от силы торможения, вертикальной нагрузки на колесо.

Силы воздействия на участок поверхности шины во время торможения

Есть классическая формула в физике F =µN =µmg, которая связывает прямо пропорциональную зависимость силы трения от коэффициента сцепления контактирующих областей и прижимной силы. N равна произведению массы нагруженного колеса на ускорение свободного падения. Конечно распределение веса на переднюю ось будет больше при торможении, но эта классическая формула дает возможность понять какие факторы рассматриваются производителями шин, чтобы обеспечить безопасность автомобиля.

Зависимость тормозного пути от коэффициента сцепления шин с дорогой

Рисунок протектора колеса играет важную роль в определении трения или сопротивления скольжению. В сухих условиях на дорогах с твердым покрытием гладкая шина дает лучшую тягу, чем рифленый или узорчатый протектор, потому что имеется большая площадь контакта для создания сил трения. По этой причине резина, используемая для автогонок, имеет гладкую поверхность без рисунка протектора. К сожалению, гладкая шина развивает очень мало сцепления при влажных условиях, потому что фрикционный механизм уменьшается благодаря смазочной пленке воды между протектором и дорогой.

Рисунок канавки или каналы, по которым идет водоотвод, обеспечивает область прямого контакта между шиной и дорогой. Типовая шина дает коэффициенты сухого и влажного сцепления около 0,7 и 0,4 соответственно. Эти значения представляют собой компромисс между экстремальными значениями около 0,9 (сухих) и 0,1 (влажных), полученными с гладкой шиной.

Торможение на мокрой дороге

Когда автомобиль заторможен до жесткой остановки на сухой дороге, максимальная сила трения может быть больше, чем прочность протектора. В результате, вместо того, чтобы шина просто скользила по дороге, резина отрывается от протектора в области контакта шины и дороги. Несомненно, сопротивление протектора этому разрыву представляет собой сочетание прочности резины, канавок и щелей, составляющих дизайн протектора. Это тоже учитывают производители шин.

Сцепление шин таблица

Кроме того, размер контактной зоны очень важен в автомобильных шинах, потому что тяга является динамической, а не статической; то есть она изменяется по мере того, как колесо катится вперед. Максимальный коэффициент трения может происходить где угодно в области контакта, и чем больше площадь, тем больше вероятность максимальной тяги.

Таким образом, при одинаковой нагрузке и на одной и той же сухой поверхности более широкий профиль имеет большую площадь контакта и развивает более высокую тягу, что приводит к большей тормозной способности. Хотя некоторые специалисты считают, что большая площадь снижает давление на единицу поверхности и таким образом прижимная сила становится меньше, а потому выигрыш в тормозной способности остается под вопросом.

Источник статьи: http://kolesnyigid.ru/sovet/koefficient-scepleniya-shin-s-dorogoj

Сопротивление качению и промышленные колёса

Трение и сопротивление качению

Процесс трения (фрикционное взаимодействие) играет важную роль в промышленном мире и повседневной жизни. Сила трения оказывает сопротивление скольжению, вращению, качению, полёту объекта из-за его контакта с другим объектом. Она может быть полезной (к примеру, когда нужно задействовать тормоза, чтобы остановить автомобиль), или вредной (при попытке ехать с ногой на педали тормоза). Эта статья расскажет о важном аспекте промышленных колёс – о сопротивлении качению.

Сопротивление качению – притормаживающее действие, которое оказывает поверхность пола на шинку (контактный слой) катящегося колеса. Оно является мерой энергии, потерянной на определённом расстоянии.

Рассмотрим катящееся по плоской поверхности колесо. Его шинка деформируется, что вызывает некоторое сопротивление движению качения. Плоская поверхность также может деформироваться, особенно если она мягкая. Хорошие примеры сильно сопротивляющихся вращению поверхностей – грязь или песок. Катить тележку по асфальту значительно легче, чем по песку.

Факторы, влияющие на рассеивание энергии катящегося промышленного колеса:

  • трение контактирующих поверхностей;
  • упругие свойства материалов;
  • грубость поверхностей.

Трение качения и трение скольжения

Коэффициент трения качения не следует путать с коэффициентом трения скольжения. Коэффициент трения скольжения выражает отношение силы трения между телами и силы, прижимающей тела друг к другу. Данный коэффициент зависит от типа используемых материалов. К примеру, сталь на льду имеет низкий коэффициент трения, а резина на асфальте имеет высокий коэффициент трения.

Рисунок 2 поясняет понятие трения скольжения. Представьте силу, которую нужно применить, чтобы протянуть тяжёлый ящик по полу. Статическое трение требует применения определённой силы, чтобы сдвинуть ящик с места. С началом движения, возникает динамическое трение, требующее постоянного приложения определенной силы для поддержания движения. В этом примере, человек, толкающий ящик, прикладывает силу Fapp, ящик весит N, а пол создает силу трения f, которая сопротивляется движению.

Причина, по которой мы используем колёса для перемещения материалов в том, что они позволяют тратить значительно меньше силы. Представьте, что приходится волочь холодильник или пианино! Более того, подумайте, насколько легче было бы передвинуть вышеупомянутый ящик, если бы применялись колёса.

Сила, требуемая для передвижения оборудования на колёсах, велика только при старте. Ее часто называют «первоначальной или «стартовой» силой. Как только получено нужное ускорение, для продолжения движения необходима гораздо меньшая сила, которую называют «перманентной» или «катящей». Как правило «стартовая» сила превышает ее в 2-2.5 раза.

Расчёт силы трения качения

Помочь узнать сопротивление качению промышленных колёс помогает коэффициент трения качения. Его значение для различных материалов получено эмпирическим путем и может варьироваться в зависимости от скорости вращения колеса, нагрузки на колесо, материала опорной поверхности.

В таблице ниже приведены коэффициенты трения качения наиболее распространенных материалов, из которых изготавливают промышленные колеса. Неудивительно, что самый мягкий, легко деформирующийся материал (резина) обладает самым высоким коэффициентом трения качения, а самый твёрдый материал (кованая сталь) – самым низким.

Источник статьи: http://advanta-m.ru/blog/soprotivlenie-kacheniyu-i-promyshlennye-kolesa.html

Оцените статью