Лобовое сопротивление автомобиля ваз

Проверяем аэродинамику автомобилей ВАЗ-2107, ВАЗ-21099 и ВАЗ-2110

Тема этого аэродинамического исследования давно, что называется, витала в воздухе, на сопротивление которому при больших скоростях и тратится львиная доля топлива. И впрямь, разве не интересно узнать, какие именно характеристики обтекаемости имеют вазовские автомобили разных поколений? Поэтому мы решили «продуть» в аэродинамической трубе Дмитровского автополигона три седана из Тольятти — ВАЗ-2107, ВАЗ-21099 и ВАЗ-2110.

Итак, «семерка», «девяносто девятая», «десятка». Надо ли объяснять, почему мы выбрали именно автомобили с кузовом седан? Среди машин «восьмого» семейства нет универсалов, а среди заднеприводных Жигулей — хэтчбеков. Вот и выходит, что седан — это единственный тип кузова, общий для трех поколений автомобилей из Тольятти.

А почему «семерка»? Ведь именно ВАЗ-2107 в 1982 году стал «флагманом» модельной линейки вазовской «классики» — ему и защищать знамена старой гвардии.

Все три машины, которые мы подобрали для аэродинамического теста, были новыми и в стандартной комплектации. Брызговики только за задними колесами, по два зеркала заднего вида у «десятки» и «девяносто девятой» и лишь одно слева — у «семерки». И никаких дополнительных молдингов или спойлеров.

После измерения площади наибольшей фронтальной проекции (площади миделя) автомобили поочередно прошли «продувку» в рабочей части аэродинамической трубы при скорости воздушного потока 40 м/с (144 км/ч). При этом действующие на машины силы фиксировали точнейшие прецизионные весы.

Источник статьи: http://autoreview.ru/articles/kak-eto-rabotaet/vaz-dinamika-aerodinamiki

Читайте также:  Нужно ли покрывать лаком автомобиль после покраски

Какие коэффициенты аэродинамического сопротивления у автомобилей LADA

Любое транспортное средство имеет не только технические параметры, но и аэродинамические характеристики (например, коэффициент аэродинамического сопротивления, сила лобового сопротивления и т.д.). Чем лучше продумана аэродинамика автомобиля, тем более совершенным он считается. Сравниваем коэффициенты аэродинамического сопротивления автомобилей LADA.

Коэффициент аэродинамического сопротивления (Сх) — это безразмерная величина, отражающая отношение силы сопротивления воздуха движению автомобиля к силе сопротивления движению цилиндра. Чем меньше Cx, тем лучше проработана аэродинамика автомобиля.

Чем меньше у кузова будет сопротивление воздуху, тем будет

  • больше максимальная скорость;
  • меньше расход топлива;
  • меньше шумов (например, могут свистеть боковые зеркала);
  • меньше проявление поднимающих сил (автомобиль будет устойчивей);
  • меньше грязи на боковых стеклах, задней двери и т.д.
  • и др.

Коэффициент определяется экспериментальным путём — в аэродинамической трубе, либо компьютерным моделированием.

Модель LADA Cx
1 Лада Приора седан 0,32
2 Лада Приора универсал 0,34
3 Лада Калина «Люкс» 0,347
4 Лада Гранта «Люкс» 0.353
5 Лада Гранта «Норма» 0.367
6 Лада Калина «Норма» 0,378
7 Лада Веста 0,38
8 Лада Калина 2 универсал 0,39
9 Лада Калина 2 хэтчбек 0,418
10 Лада Ларгус 0,42
11 Нива 4х4 0,536
12 Lada XRAY пока неизвестно

Что влияет на аэродинамику автомобиля:

  • открытые окна увеличивают сопротивление воздуху на 5%;
  • дополнительные брызговики на 3%;
  • багажник на крыше на 10-12%;
  • шины с широким профилем на 3%;
  • открытый люк на крыше на 5%;
    выпирающие колпаки;
  • радиоантенна.

Например, если закрыть все щели кузова, воздухозаборник в бампере и задние колесные ниши, то максимальная скорость автомобиля может увеличиться на 7,1 км/ч.

У Лада Веста вроде бы обтекаемый кузов, а почему тогда такой высокий коэффициент аэродинамического сопротивления? Может быть причина в выштамповках на дверях?

Ключевые слова: универсальная статья

Источник статьи: http://xn--80aal0a.xn--80asehdb/reviews-tests/lada-vesta-reviews-tests/1997-lobovoe-soprotivlenie.html

Нас не догонят!

Многие из нас не задумываясь считают обтекаемым тот автомобиль, который таковым выглядит. И ошибаются. У весьма динамичного внешне ВАЗ-2109 коэффициент аэродинамического сопротивления чуть меньше, чем у «Жигулей», и больше, чем у коротенькой угловатой «Оки». У древней «Победы» такой же, как у ВАЗ-2106. Даже у стремительного на вид «Святогора» с точки зрения аэродинамики весьма неудачный задок. Срыв потока происходит как раз по нижней кромке двери, наклоненной на 27°. В итоге заднее стекло чистое, но коэффициент сопротивления наихудший из возможных.

Первый отечественный автомобиль, к которому инженеры подошли со всей серьезностью еще на этапе разработки макета — ВАЗ 2110. В результате на высоких скоростях «десятка» разгоняется гораздо охотнее «девятки» с таким же двигателем, а экономия топлива очевидна даже на глаз.

Чтобы снизить сопротивление воздуха, надо свести к минимуму лобовую площадь или коэффициент обтекаемости. Лобовая площадь уже устоялась и меняется в зависимости от класса машины примерно от 1,5 до 2,5 м2. Уменьшить ее можно, разве что усадив пассажиров в затылок друг другу. Хорошо, если их будет два. А пятерых гуськом? Как ни крути, остается обтекаемость. Существует несколько разновидностей, разбитых по осям координат. Поскольку автомобиль обычно движется вперед, конструкторов интересует прежде всего та, что идет вдоль оси машины, по координате «х». Потому коэффициент обтекаемости так и называется — Сх.

Чтобы уяснить, что это такое, разберемся, из чего складывается воздействие воздуха на автомобиль. До 13% всех потерь вносит сопротивление выступов. Это любая выступающая часть машины (зеркало, антенна, брызговики, дверные ручки и т.д.). Именно поэтому на современных машинах нет ни форточек, ни водосточных желобков. Внутреннее сопротивление съедает до 10% всех потерь. Создается при прохождении воздуха через систему охлаждения и вентиляцию. Снизить его без ущерба для двигателя и комфорта невозможно.

«Прилипанию» струй воздуха к поверхности кузова (сопротивление трения) принято отводить до 11% потерь. Действует только в очень тонкой, прилежащей к стенкам зоне, называемой пограничным слоем, и потому зависит от качества покраски автомобиля. Сопротивление трения грязной машины может быть в 2–4 раза больше, чем свежевымытой.

Разность давлений на верхнюю и нижнюю части кузова называют индуктивным сопротивлением. Это сила, которая стремится оторвать машину от дороги. Ее доля — около 8%.

Самый большой вклад (до 58% всех потерь) приходится на профильное сопротивление, задаваемое самой формой кузова. Поскольку автомобиль движется, воздух перед ним уплотнен. Поток, идущий по верхней части кузова, многократно отрывается от него, создавая области пониженного давления. В задней части поток окончательно отрывается. Там образуется мощный вихревой след и область больших отрицательных давлений. Именно совершенствованием формы кузова и достигают наибольшего снижения Сх.

К сожалению, обтекаемость формы кузова расчету не поддается. Все знания о воздушном сопротивлении получены экспериментально, обдувом в аэродинамических трубах.

Передняя часть автомобиля должна быть низкая и широкая, без острых углов, чтобы не было отрыва потоков воздуха. Оптимальный наклон ветрового стекла 48–55°. Больший угол улучшает аэродинамику незначительно.

Наибольшее влияние на коэффициент обтекаемости оказывает задняя часть автомобиля по той простой причине, что там поток обрывается и — главное — образуются завихрения. Эти самые завихрения и приносят основные потери, причем наибольшее влияние на Сх оказывает угол наклона задней части. На графике показано влияние этого угла на коэффициент сопротивления воздуха и положение линии отрыва. На автомобилях с круто срезанной задней частью, с углом от 40 до 90 градусов, линия отрыва идет по задней кромке крыши, и вихри не возникают.

Если наклон уменьшать, то можно получить граничное значение угла, при котором линия отрыва переходит с кромки крыши на нижнюю кромку наклонной поверхности задка. Образуются два вращающихся вовнутрь продольных вихря, которые порождают сильное разрежение.

Дальнейшее уменьшение наклона задка вновь снижает аэродинамическое сопротивление, поскольку продольные вихри ослабляются. При угле в 23° получается значение Cв=0,40, такое же, как у автомобиля с круто срезанной задней частью. Наилучший угол с точки зрения аэродинамики близок к 10°, однако по соображениям компоновки и безопасности так сильно наклонить стекло невозможно.

Противотуманки, фартуки, длинная антенна, намордники с кокетливыми ушками и багажник на крыше могут поднять Сх обычной «шестерки» с 0,46 до 0,58, а то и больше.

Несведущий в аэродинамике может поверить, что пластиковые дефлекторы на передней кромке капота сдувают комаров с ветрового стекла. На самом деле эта «мухобойка» своими острыми краями лишь завихряет воздух, и больше ничего. Другая модная безделушка — дефлектор на вентиляционные отверстия — будет работать лучше, если. его перевернуть задом наперед. Антикрыло почему-то чаще всего устанавливают в зоне аэродинамической тени. Возможно, так красивее, но толку никакого. За редким исключением, любой обвес несет лишь одну функцию: кроме расходов за покупку и установку, он заставит раскошелиться за лишние литры бензина.

Источник статьи: http://www.zr.ru/content/articles/1489-nas_ne_dogonat/

Лобовое сопротивление автомобилей таблица

В процессе проектирования и создания конструкторами очень тщательно прорабатывается аэродинамика автомобиля, поскольку она оказывает значительное влияние на технические показатели модели.

При движении автомобиля большая часть мощности силовой установки уходит на преодоление сопротивления, создаваемого воздухом. И правильно созданная аэродинамика автомобиля позволяет уменьшить это сопротивление, а значит на борьбу с противодействием находящего воздушного потока потребуется затратить меньше мощности, и соответственно – топлива.

Измерение аэродинамики автомобиля проводится для изучения сил, создаваемых воздушным потоком и воздействующих на транспортное средство. И таких сил несколько – подъемные и боковые, а также лобовое сопротивление.

Лобовое сопротивление и коэффициент Сх

По большей части все работы с кузовом авто направлены на преодоление лобового сопротивления, поскольку именно эта сила самая значительная.


Движение потоков воздуха

За основу при расчетах берется сила сопротивления воздуха. Для вычисления результата используются такие данные как плотность воздуха, площадь поперечной проекции авто, коэффициент аэродинамического сопротивления (Сх) — это важнейший показатель в аэродинамике автомобиля. При этом на силу сопротивления в значительной мере влияет также скорость движения. Так, увеличение скорости вдвое будет сопровождаться повышением сопротивлением в 4 раза. Скорость один из мощных факторов увеличения расхода.

Например, для хорошо обтекаемого авто с площадью проекции 2 м2 и коэффициентом 0,3 при движении на скорости 60 км/ч для преодоления сопротивления воздуха необходимо 2,4 л.с., а при скорости 120 км/ч уже 19,1 л.с. Разница расхода топлива при таких условиях достигает 30% на 100 км.

Если вам, в данный момент, требуется максимальная экономия топлива, необходимо придерживаться постоянной скорости около 60 км/ч. В этом режиме движения расход будет минимальным даже у авто с большим Cx.

Рассмотрим все по-простому. У воздуха есть своя плотность, причем немалая. При движении автомобилю приходится проходить через имеющиеся воздушные массы, при этом создается поток, который обтекает кузов. И чем легче авто будет «резать» воздушную массу, тем меньше он затратит на это энергии.

Но не все так просто. Во время движения перед авто создается область увеличенного давления (машина сжимает воздушную массу), то есть спереди образуется такой себе невидимый барьер, осложняющий «разрезание» воздушной массы.

Также после обтекания кузова происходит отрыв воздушного потока от поверхности, что становиться причиной появления завихрений и разрежения за авто. В сочетании с повышенным давлением возникающее разрежение еще больше увеличивает сопротивление.

Поскольку повлиять на плотность воздуха невозможно, то конструкторам остается только вносить коррективы в две другие расчетные составляющие – площадь авто и коэффициент аэродинамического сопротивления.

Но уменьшить проекцию авто не представляется особо возможным без ущерба для полезных пространств кузова (просто невозможно сделать авто меньше, чем он есть), поэтому остается только изменение коэффициента Сх.

Этот коэффициент устанавливается экспериментальным путем (в аэродинамической трубе) и характеризует он соотношение лобового сопротивления к скоростному напору и площади поперечного сечения кузова. Величина его безразмерная.


Аэродинамическая труба

Наименьший коэффициент аэродинамического сопротивления имеет каплевидное тело. При движении в воздушной массе такое тело плавно перед собой разводит поток, не создавая области повышенного давления, а имеющийся «хвост» позволяет за собой сомкнуть поток без обрывов и завихрений, то есть разрежение тоже отсутствует. Получается, что воздух просто обтекает тело, создавая минимальное сопротивление. Для такого тела коэффициент Сх составляет всего 0,05.

Конструкторам, работая с аэродинамикой автомобиля добиться, таких показателей пока не удается. И все потому, что при движении сопротивление создается несколькими факторами:

  • Формой кузова;
  • Трением потока о поверхности при обтекании;
  • Попаданием потока в подкапотное пространство и салон.

Поэтому для современных авто коэффициент аэродинамического сопротивления считается отличным, если его значение ниже 0,3. К примеру, у Peugeot 308 коэффициент составляет 0,29, у Audi A2 он равен 0,25, а у Toyota Prius – 0,26. Но стоит отметить, что это расчетные показатели в идеальных условиях. На практике же во время движения на авто воздействуют множество разнообразных факторов, которые негативным образом сказываются на сопротивлении кузова.

Примечательно, что на коэффициент оказывает наибольшее влияние не передок авто, а его задняя часть. И виной этому становится создание разрежения и завихрений в результате отрыва потока от кузова. Поэтому конструкторы по большей части занимаются приданием необходимой формы именно задней части.


Коэффициент сопротивления Volkswagen XL1 составляет всего 0,19

Снизить коэффициент Сх позволяет также уменьшение количества выступающих частей, причем везде на авто (бока, крыша, днище, передок), а тем элементам, которые не удается убрать с поверхности придается максимально возможная обтекаемая форма.

Сопротивление воздуха

Автор: Юлиюс Мацкерле (Julius Mackerle) Источник: «Современный экономичный автомобиль» [1]
53617 5

На расход топлива, в особенности при больших скоростях движения, значительное влияние оказывает сопротивление воздуха (аэродинамическое сопротивление), сила аэродинамического сопротивления пропорциональна квадрату скорости и рассчитывается по формуле

где S – площадь фронтальной проекции автомобиля, м2; v – скорость движения автомобиля относительно воздуха, м/с; ρ – плотность воздуха, кг/м3; cх – коэффициент аэродинамического сопротивления.

Аэродинамическое сопротивление не зависит от массы автомобиля [2]. Площадь фронтальной проекции автомобиля определяется формой кузова и требованиям по обеспечению комфортного расположения водителя и пассажиров на сиденьях. Например, автомобиль большого класса может быть ниже, чем малого, так как сиденья у него зачастую располагаются ниже. У автомобиля малого класса из-за его небольшой массы и длины сиденья расположены выше над полом, и поэтому расстояние между передними и задними сиденьями меньше. Более прямое расположение водителя и пассажиров в автомобиле малого класса требует его большей высоты, но меньшей длины. Площади фронтальных проекций обоих автомобилей при этом почти одинаковы, но низкий и длинный кузов автомобиля большого класса аэродинамически более выгоден.

Мощность двигателя, необходимая для преодоления аэродинамического сопротивления, пропорциональна, следовательно, кубу скорости:

Nv = Pv·v/3600 (кВт),

где v — относительная скорость движения автомобиля, км/ч.

Коэффициент аэродинамического сопротивления, как видно из таблицы, представленной ниже, изменяется в широком диапазоне в зависимости от формы кузова автомобиля.
Аэродинамическое сопротивление различных автомобилей

1,18 – 1,47 9,6 – 11,8 31,0 – 40,5
Закрытый, с наличием углов и граней 0,6 – 0,7 0,96 – 1,18 8,0 – 9,6 26,4 – 30,8
Закрытый, с закруглением углов и граней 0,5 – 0,6 0,80 – 0,96 6,6 – 8,0 22,0 – 26,4
Закрытый понтонообразный 0,4 – 0,5 0,66 – 0,80 5,2 – 6,6 17,6 – 22,0
Закрытый, хорошо обтекаемый 0,3 – 0,4 0,52 – 0,66 3,7 – 5,2 13,2 – 17,6
Закрытый, аэродинамически совершенный 0,20 – 0,25 0,33 – 0,44 2,6 – 3,3 9,8 – 11,0
Грузовой автомобиль 0,8 – 1,5
Автобус 0,6 – 0,7
Автобус с хорошо обтекаемым кузовом 0,3 – 0,4
Мотоцикл 0,6 – 0,7

Коэффициент аэродинамического сопротивления устанавливается продувкой автомобиля или его макета в аэродинамической трубе или приближенно в ходе эксплуатационных испытаний. При испытаниях в аэродинамической трубе на макетах получаются менее точные значения, чем при тех же испытаниях на реальных автомобилях. Это вызвано тем, что на изменение сопротивления воздуха оказывают влияние неточности изготовления некоторых узлов и деталей автомобиля: ручек дверей, днища кузова, бамперов, зеркал заднего вида и т. д. Кроме того, значительное влияние на величину сх оказывает воздух, проходящий в кузов для охлаждения и вентиляции.

При больших скоростях движения автомобиля аэродинамическое сопротивление является преобладающим.

На рисунке ниже показано изменение мощностей, необходимых для преодоления сопротивления качению Nf и аэродинамического сопротивления Nv в зависимости от скорости v для автомобиля среднего класса. При скорости 60 км/ч мощности, необходимые для преодоления сопротивления качению и сопротивления воздуха, равны, что характерно для данного вида автомобилей. По сумме потребляемых мощностей можно убедиться в важности сопротивления воздуха. При скорости 80 км/ч мощность, затрачиваемая на его преодоление, в 4 раза больше, чем при скорости 40 км/ч, а при скорости выше, чем 120 км/ч, общая мощность, необходимая для движения, растет почти пропорционально кубу скорости автомобиля.

Мощность, затрачиваемая на преодоление сопротивлений движению
Масса автомобиля 1350 кг, площадь фронтальной проекции S автомобиля 2 м2; коэффициент сопротивления качению f равен 0,015; коэффициент аэродинамического сопротивления сх равен 0,456.

При определении мощности двигателя, необходимой для достижения максимальной скорости, большей той, которую обеспечивает номинальная мощность установленного на автомобиле двигателя, можно использовать без значительной ошибки следующее соотношение:

где N2 – требуемая мощность, кВт; N1 – достигнутая максимальная мощность, кВт; v2 – требуемая скорость, км/ч; v1 – достигнутая максимальная скорость, км/ч.

Через точку X – максимальная мощность N1 при максимальной скорости v1 – проведена кривая зависимости мощности от куба скорости. Разница между этой кривой и линией мощности, требуемой для движения при максимальной скорости, незначительна.

Показанная сумма мощностей сопротивления качению Nf и аэродинамического сопротивления Nv представляет собой мощность сопротивления равномерному движению автомобиля по горизонтальному участку дороги при безветрии.

Последнее обновление 02.03.2012 Опубликовано 16.03.2011

Подъемная и прижимная сила

В результате неравномерного обтекания потоком воздуха автомобиля с разных сторон возникает разница в скорости его движения.


Действующие подъемная и прижимная силы

Автомобиль движется и рассекает поток воздуха, при этом часть этого потока уходит под авто и проходит под днищем, то есть движется практически по прямой. А вот верхней части потока приходится повторять форму кузова, и ей приходится проходить большее расстояние. Из-за этого возникает разница в скорости воздуха – верхняя часть движется быстрее нижней, проходящей под авто. А поскольку увеличение скорости сопровождается снижением давления, то под днищем образуется зона повышенного давления, которая приподнимает машину.

Проблем добавляет и лобовое сопротивление. Область повышенного давления воздушной массы перед машиной прижимает передок к дороге, в то время как разрежение и завихрения позади наоборот – способствуют приподнятию кузова. Подъемная сила, как и лобовое сопротивление, возрастает при увеличении скорости движения.

Негативным фактором от воздействия такой силы является ухудшение устойчивости авто при увеличении скорости и повышение вероятности ухода в занос.

Но эта сила может оказывать и положительное действие. При внесении корректив в конструкцию авто возможно преобразование подъемной силы в прижимную, которая будет обеспечивать лучшее сцепление с дорогой, устойчивость авто, его управляемость на высоких скоростях.

При этом для получения прижимной силы не требуется каких-либо отдельных решений. Все разработки, направленные на снижение коэффициента Сх также сказываются и на прижиме. К примеру, оптимизация формы задней части приводит к уменьшению завихрений и разрежения, из-за чего подъемная сила тоже снижается, а прижимная — повышается. Установка заднего спойлера действует таким же образом.


Уменьшение завихрений при установке спойлера

Боковые же силы при установлении аэродинамики автомобиля, особо в расчет не берутся, в силу того, что они не постоянны, а также значительного влияния на показатели авто не оказывают.

Но это все теория аэродинамики автомобиля. На практике все можно пояснить одним предложением — чем хуже аэродинамика, тем выше расход топлива.

Коэффициент местного сопротивления

Сначала дадим определение коэффициенту местного сопротивления. Местными сопротивлениями называются называют точечные потери напора, связанные с изменением структуры потока. В вентиляции существует множество составляющих, что играют роль местного сопротивления:

  • поворот воздуховода,
  • сужение или расширение потока,
  • вход воздуха в воздухозаборную шахту;
  • «тройник» и «крестовина»;
  • приточные и вытяжные решетки и воздухораспределители;
  • воздухораспределители;
  • диффузор;
  • заслонки и т.д.

Их КМС рассчитываются по определенным формулам, а затем они участвуют в определении местных потерь давления. В математическом понятии коэффициент местных потерь — это отношение потерь известного напора в местном сопротивлении к скоростному напору.

Коэффициент местного сопротивления зависит от формы и вида местного сопротивления, шероховатости воздуховода и как ни странно от числа Рейнольдса. Для заслонок и другой запорной арматуры к перечисленному додается еще степень открытия.

Связанность КМС с числом Рейнольдса выражается в формуле

Значения коэффициентов В

для некоторых местных сопротивлений

Чем больше число Rе тем меньше от него зависит коэффициент. Полная независимость коэффициента местного сопротивления от числа Rе в вентиляционной системе происходит для резких переходов при Rе > 3000, а для плавных переходов — при Rе > 10000.

Суммарный коэффициент местных сопротивлений на участке воздуховода равен сумме всех местных коэффициентов на этом участке.

На практике же времени особо для расчета КМС нету, поэтому проектировщики пользуются таблицами со справочников и других источников. Тем более зачем тратить кучу времени на поиски формул и расчеты, если это уже сделали за вас. Многие ]шумоглушителей[/anchor], клапанов и решеток с удовольствием указывают значение коэффициента местного сопротивления в каталогах. Но, конечно, уж если совсем никаких данных не нашли, тогда нужно прибегнуть к математике.

Что ещё влияет на аэродинамику?

Конечно, конструкторы стараются по максимуму снизить сопротивление авто при движении и повысить прижимную силу. Но особенности эксплуатации авто и свой взгляд автовладельцев на внешние особенности машины вносят свои коррективы, причем в некоторых случаях – значительны.


Аэродинамическое сопротивление разных автомобилей в зависимости от скорости

К примеру, установка багажника на крышу, даже с аэродинамической формой увеличивает поперечную проекцию авто и сильно влияет на обтекаемость, это сразу сказывается на потреблении топлива.

Также расход повышается от езды с открытыми окнами и люком, использование защитных и декоративных обвесов, перевозка негабаритных грузов, выступающих за авто, нарушение положения конструктивных элементов, расположенных под днищем, повышение клиренса.

Но автовладелец также может и внести коррективы, которые положительно повлияют на аэродинамику автомобиля. К ним относится использование аэродинамических обвесов, установка спойлера, уменьшение клиренса.

Источник статьи: http://avto-lover.ru/novosti/koefficient-aerodinamicheskogo-soprotivleniya-vaz.html

Оцените статью