Логический пробник для автомобиля

Содержание
  1. Миниатюрный логический пробник
  2. История создания
  3. Работа схемы
  4. Как это работает
  5. Небольшое дополнение
  6. Информация для заказа
  7. Универсальный логический пробник.
  8. Автомобильный тестер-пробник – как сделать своими руками, схема, конструкция
  9. Самодельный автомобильный тестер-пробник
  10. Как пользоваться тестером
  11. Как проверить аккумулятор
  12. Как проверить лампочку накаливания
  13. Как проверить автомобильное реле
  14. Как пользоваться тестером при ремонте электропроводки автомобиля
  15. Обзор пробников электрика
  16. Принципиальные схемы
  17. Пробник и тестер для самостоятельного ремонта электрооборудования автомобиля, выбор, схема логического пробника
  18. Простой пробник на лампе
  19. Светодиодный логический пробник
  20. Схема простого логического пробника для проверки и ремонта электрооборудования автомобиля
  21. Простой пробник – прозвонка своими руками
  22. Половина успеха автоэлектрика — инструменты: что должно быть в арсенале специалиста?
  23. Инструкция по изготовлению тестера
  24. Этапы
  25. Цена вопроса
  26. Видео «Наглядная инструкция по изготовлению светодиодного пробника»
  27. Индикатор напряжения на светодиодах своими руками
  28. Для чего нужен логический пробник?
  29. Пробник электрика: принцип работы и изготовление
  30. Как изготовить эвуковой пробник электрика своими руками?
  31. Заключение
  32. Как своими руками сделать тестер
  33. Необходимые детали
  34. Выбор диапазонов измерения и вычисление номиналов резисторов
  35. Подгонка и монтаж
  36. Определение точного напряжения батарейки
  37. Сбор блока питания
  38. Пробник автоэлектрика
  39. Как сделать индикатор для проверки проводки в автомобиле

Миниатюрный логический пробник

История создания

В практике каждого радиолюбителя, периодически возникают ситуации, когда под рукой нет необходимых измерительных приборов. Вот и я, однажды, в конце 90-х годов, находясь далеко от дома (да еще и в полевых условиях), столкнулся с такой ситуацией. Для поиска неисправности в промышленном оборудовании мне срочно понадобился логический пробник. Но где его возьмешь в 50 км. от ближайшего населенного пункта.

Так как ситуация возникла спонтанно и никаких ремонтов не планировалось, то кроме мультиметра, паяльника и небольшого набора деталей у меня с собой ничего не было. Оценив имеющийся у меня с собой перечень деталей в голове родилась простая до безобразия схема.

Читайте также:  Масло для двигателя автомобиля рейтинг

Схема простого логического пробника

Потратив вечер на изготовление и наладку пробника, к утру я обладал достаточно неплохим прибором, который в последствии доказал свою эффективность и практичность.

Работа схемы

Логический элемент (параллельно 4 элемента 2И-НЕ), включенный в режиме инвертора, находится в пограничном состоянии благодаря обратной связи через высокоомный резистор. На его входе и выходе — приблизительно Uпит/2 . Светодиоды погашены — им не хватает напряжения для зажигания. Дальше все просто — при подаче лог «1» или «0», элемент входит в обычный режим и зажигает соответствующие светодиоды.

Диод D1 — любой (лучше Шоттки), защитит устройство от случайной переполюсовки питания. В качестве микросхемы D1, без корректировки схемы, можно использовать распространенные КМОП микросхемы CD4011 (К561ЛА7), CD4001 (К561ЛЕ5), а также другие логические элементы.

С тех пор, этот пробник является моим надежным помощником. Я сделал несколько экземпляров этого прибора. Из-за своей миниатюрности (если использовать микросхему в корпусе SOIC), вся начинка пробника легко помещается в корпус маркера. Вот как выглядит пробник в сборе.

Логический пробник в корпусе маркера

Как это работает

Небольшое видео с демонстрацией работы логического пробника. Питание схемы осуществляется от источника 9 вольт.

Небольшое дополнение

Так как пробник имеет высокоомный вход, в некоторых случаях возможно слабое свечение светодиода Лог «0», особенное при напряжении 12 вольт и при непосредственном контакте рук с платой. Эти эффекты проходят при помещении устройства в корпус, экранировании и т.п. В любом случае, работе это не мешает.

Информация для заказа

Радиолюбители, желающие самостоятельно собрать миниатюрный логический пробник Микрош, могут приобрести печатные платы или набор для самостоятельной сборки миниатюрного логического пробника.

Источник статьи: http://gnativ.ru/miniatyurnyj-logicheskij-probnik/

Универсальный логический пробник.

Логический пробник, выполненный на микросхемах 561 серии, позволяет индицировать высокий и низкий логические уровни, обрыв цепи, а также показывать мигающим светом наличие импульсной последовательности. Пробник упрощает поиск неисправностей в цифровых устройствах, выполненных как на КМОП, так и ТТЛ микросхемах.

Два светодиода, красный и зеленый, индицируют различные состояния контрольной точки в соответствии с приведенной таблицей истинности. Из принципиальной схемы следует, что зеленый светодиод VD3 светит только тогда, когда вход пробника соединен с высокоимпедансным или свободным логическим узлом, так как статический режим транзисторов VT1,VT2 не изменяется и, соответственно, через зеленый светодиод протекает ток.

При появлении на входе пробника уровня логической 1 или логического 0 закрывается транзистор VT1 или VT2 соответственно, и в любом случае зеленый светодиод прекращает светится.

Логические вентили ИЛИ-НЕ микросхемы DD3 включают красный светодиод VD2, когда на вход пробника подается уровень

логической 1, резистор R6 служит для ограничения тока. Красный светодиод будет светится также в случае, когда появляется уровень логической 1 на выв. 1 одновибратора DD2.1. Этот одновибратор служит только для индикации динамической импульсной последовательности на входе пробника. На микросхеме DD2, состоящей из двух D-триггеров, выполнены два одновибратора. Первый одновибратор выполнен на элементе DD2.1 микросхемы вместе навесными элементами R3C2, а второй на элементе DD2.2 вместе с навесными элементами R4C3. Первый одновибратор запускается положительным перепадом, поступающим с выхода логического элемента DD1.2. Когда на тактовый вход 3 микросхемы DD2.1 поступает импульс, то на выводе 1 появится уровень 1, поскольку D- вход (выв.5) соединен с питающим напряжением. Конденсатор С2 заряжается через резистор R3 и так как установочный вход R (выв.4) D- триггера связан с конденсатором С2 и, следовательно, через определенный период времени, равный Т1

R3C2, на выв.1 триггера DD2.1 появится уровень 0.

Положительный фронт импульса с вывода 2 триггера DD2.1 поступает на тактовый вход 11 триггера DD2.2 и запускает второй одновибратор, работающий аналогично первому. Высокий уровень, появляющийся на выв.13 триггера DD2.2 подается на вход логического элемента DD1.1 и запрещает прохождение импульсов со входа пробника на вход первого одновибратора на время Т2

R4C3. По истечении времени Т = Т1+Т2 одновибраторы готовы к запуску при появлении следующего положительного сигнала на входе пробника. Таким образом, схема имеет свою собственную частоту

F = 1/T, независимо от частоты входной импульсной последовательности. Сигнал с частотой F = 2,5Гц с выв. 2 микросхемы DD2.1 и выв. 13 микросхемы DD2.2 проходят через логические элементы DD1.3,DD1.4 на красный светодиод VD2, который вспыхивает с этой частотой F. Логический элемент «ИЛИ», образованный DD1.3,DD1.4 обеспечивает надежную индикацию наличия входных импульсных последовательностей независимо от их скважности . Сигналы с очень большой или очень маленькой скважностью, которые в обычном случае нельзя было бы отличить от неизменных уровней напряжения постоянного тока, вызовут в пробнике вспыхивание красного светодиода с частотой F = 2.5Гц. Вход пробника защищен от сигналов отрицательной полярности с помощью цепочки R1,VD1. Пробник может работать от любого источника напряжением от 5В до 15В, защищен от повышенного напряжения стабилитроном VD4 и резистором R12, а от ошибочной полярности включения источника питания диодом VD5.

Пороговые уровни логических напряжений составляют примерно 20% и 80% значения напряжения питания. От источника питания в 5В пробник потребляет ток 6мА.

Источник статьи: http://zen.yandex.ru/media/id/5c0661c064c7fc0436738224/universalnyi-logicheskii-probnik-5ceb42bc7b478b00b277d213

Автомобильный тестер-пробник – как сделать своими руками, схема, конструкция

Самодельный автомобильный тестер-пробник

Несмотря на высокую надежность автоэлектрики современных автомобилей, все равно приходится сталкиваться с ее ремонтом. Чаще всего перестают работать световые приборы, фары, габаритные огни или указатели поворота. Причиной неисправности может быть, как сама лампочка, так и токоподводящие контакты или предохранитель.

Возможно возникновение сразу всех трех неисправностей. Из-за плохого контакта в патроне или колодки лампочки она может перегореть. В момент перегорания в самой лампочке возникает дуга, укорачивающая нить накала, что приводит к резкому увеличению в цепи тока. При перегорании лампочки часто перегорает и предохранитель.

Разобраться в причине поломки без приборов не простая задача. Придется подставлять заведомо исправные детали.

Неисправность можно определить с помощью стрелочного тестера или мультиметра, но не у каждого есть такой прибор и в автомобиле не очень удобно с ним работать, особенно в плохую погоду.

Гораздо удобнее искать неисправность простейшим универсальным автомобильным тестером-пробником, сделанным своими руками.

Автомобильный тестер-пробник можно сделать из любой шариковой ручки, удалив из нее пишущий стрежень и разместив в ее корпусе всего один светодиод любого типа и токоограничивающий резистор.

Соединяются детали между собой по ниже приведенной электрической принципиальной схеме. Как видите, проще схемы не бывает.

Такой пробник может своими руками смастерить любой автолюбитель, не имеющий опыта изготовления электронных устройств.

Для надежного электрического контакта при касании щупом и возможности прокола изоляции проводов при поиске неисправностей, конец щупа выполнен виде стального острия.

Чтобы сделать такой конец из пишущего стержня нужно извлечь пишущий узел и со стороны поступления пасты вставить в него тонкую швейную иголку. Иголка выдавит шарик, и острый ее конец выйдет из пишущего узла.

Если ее вставить со значительным усилием, то она будет крепко зафиксирована. К самой иголке припаивается проводник, идущий к светодиоду.

Пишущий стержень надо брать с латунным пишущим узлом и большим шариком (ручки с такими стрежнями оставляют широкую линию), иначе иголка может не достаточно войти в пишущий узел, и не будет выступать в достаточной мере, на 1,5-2 мм.

Проводник, для подключения автомобильного тестера к минусу аккумулятора или корпусу автомобиля можно припаять непосредственно к выводу резистора R1. Но для возможности смены проводника в случае его обрыва или если потребуется провод большей длины, я сделал присоединение его на резьбе.

Для этого достаточно отрезок трубки с внутренней резьбой вплавить, разогрев паяльником в подготовленное отверстие в корпус авторучки, предварительно припаяв к ней проводник необходимой длины.

Светодиод установлен на боковой стороне корпуса автомобильного тестера, но можно его установить на торце корпуса, а минусовой провод вывести сбоку.

Как пользоваться тестером

Приведу на примерах как можно выполнить проверку тестером исправность аккумулятора, предохранителя, лампочки накаливания и электромагнитного реле.

Как проверить аккумулятор

Для проверки наличия напряжения на выводах аккумулятора, нужно зажимом крокодил подсоединиться к отрицательному выводу аккумулятора, а концом щупа тестера прикоснуться к положительной клемме.

Если светодиод на тестере засветился, значит, напряжение на аккумуляторе есть. Такая проверка не позволяет проверить степень заряда аккумулятора. Определению уровень заряженности аккумулятора посвящена статья сайта «Как заряжать аккумулятор автомобиля».

Для проверки автомобильного предохранителя, нужно одним концом вывода предохранителя прикоснуться к положительному выводу аккумулятора и концом щупа тестера прикоснуться ко второму его выводу.

Если светодиод на тестере засветился, значит, предохранитель исправен. В противном случае потребуется его замена или ремонт.

Как проверить лампочку накаливания

Для проверки тестером лампочки накаливания, нужно одним выводом цоколя лампочки прикоснуться к положительному выводу аккумулятора, а ко второму выводу лампочки прикоснуться щупом тестера.

Если светодиод засветится, то лампочка исправна. Если в лампочке две нити накала, например лампочка для фар автомобиля, то нити накала проверяются по очереди.

Как проверить автомобильное реле

Автомобильное реле кроме обмотки электромагнита имеет еще и контакты, которые со временем выгорают и могут перестать коммутировать электрические цепи. С помощью тестера можно проверить как целостность обмотки, так и исправность контактов.

Стандартное автомобильное реле имеет ниже приведенную электрическую схему. Выводы 85 и 86 сделаны от обмотки реле. Вывод под номером 30 выполнен от подвижного контакта, 87а от нормально замкнутого контакта с подвижным контактом 30 и 87, это вывод от контакта, с которым соединяется подвижный контакт 30 при подаче на обмотку напряжения питания.

Для проверки обмотки реле, нужно одним из его выводов 85 или 86 прикоснуться к плюсовой клемме аккумулятора, а ко второму выводу прикоснуться щупом тестера.

Если светодиод засветился, значит, обмотка целая. Исправность контактов проверяется касанием вывода подвижного контакта 30 к клемме аккумулятора, а щупа к выводу 87а.

Таким же способом легко проверить любые выключатели и микропереключатели.

Как пользоваться тестером
при ремонте электропроводки автомобиля

На практике при поиске неисправности электрооборудования автомобиля нет необходимости извлекать предохранители и лампочки. Как известно, отрицательный вывод аккумулятора подключен к корпусу автомобиля и все электрооборудование в автомобиле одним выводом тоже подключено к корпусу.

Таким образом, удалось в два раза уменьшить количество проводов электропроводки и повысить ее надежность.

Исключение составляют только активаторы для замков дверей автомобиля, так как на них нужно подавать напряжение разной полярности в зависимости от необходимости отрыть или закрыть замок двери.

Например, если не светит лампочка одной из фар. Неисправность может быть в одном из элементов подачи напряжения на лампочку – включатель в салоне, реле, предохранитель или неисправность самой лампочки. Вероятнее всего перегорела сама лампочка, с нее и надо начинать проверку.

Для этого нужно зажимом крокодил тестера зацепиться за любую оголенную металлическую деталь кузова автомобиля или отрицательный вывод аккумулятора. Проверить качество контакта, прикоснувшись иглой щупа к плюсу аккумулятора. Светодиод должен светить.

Включить неработающую фару и концом щупа по очереди коснуться всех контактов подключения лампочки.

Если такой возможности нет, то можно иглой щупа проколоть по очереди каждый провод и если напряжения ни на одном нет (светодиод пробника не засветился) значит, лампочка цела, и нужно проверить предохранитель.

По схеме смотрите, где он установлен и проверяете его, даже не вынимая из колодки. Для этого достаточно коснуться сначала к одному его выводу, а затем к другому.

Светодиод тестера должен засветиться каждый раз. Если светит только при прикосновении к одному из выводов, то предохранитель перегорел.

Если к выводам предохранителя не подобраться, то нужно его вынуть и проверить, как описано в статье выше.

По такой методике проверяются любые провода электропроводки и контакты в автомобиле.

Обзор пробников электрика

В повседневной работе электрикам, часто требуется проводить измерения напряжения, прозванивать цепи и провода на целостность.

Иногда требуется просто узнать, находится ли данная электроустановка под напряжением, обесточена ли розетка, например, прежде чем менять её, и тому подобные случаи.

Универсальным вариантом, который подходит для совершения всех этих измерений, является использование цифрового мультиметра, или хотя бы обычного стрелочного советского АВО – метра, часто называемого “Цешкой”.

Такое название вошло в нашу речь от именования прибора Ц-20 и более свежих версий советского производства.

Да, современный цифровой мультиметр очень хорошая штука, и подходит для большинства измерений проводимых электриками, за исключением специализированных, но часто нам не требуется весь функционал мультиметра.

Электрики часто носят с собой аркашку, которая представляет собой простейшую прозвонку, с питанием от батареек, и с индикацией целостности цепи на светодиоде или лампочке.

На фото выше двухполюсный индикатор напряжения. А для контроля наличия фазы пользуются индикатором отверткой. Также находят применение двух полюсные индикаторы, с индикацией, также как и в случае с индикатором отверткой, на неоновой лампе.

Но мы живем сейчас в XXI веке, а такими способами пользовались электрики в 70 – 80 годах прошлого века. Сейчас все это давно устарело.

Не желающие заморачиваться с изготовлением, могут купить в магазине прибор, позволяющий прозванивать цепи, а также он может показывать, путем загорания определенного светодиода приблизительное значение напряжения в проверяемой цепи. Иногда бывает встроена функция определения полярности диода.

Но такой прибор стоит не дешево, недавно видел в радиомагазине по цене в пределах 300, а с расширенной функциональностью и 400 рублей. Да, прибор хороший, слов нет, многофункциональный, но среди электриков часто попадаются люди творческие, имеющие знания по электронике, выходящие хотя бы минимально, за рамки базового курса колледжа или техникума.

Для таких людей и написана эта статья, потому что эти люди, которые собрали хотя бы одно или пару устройств, своими руками, они обычно могут оценить разницу в стоимости радиодеталей, и готового устройства.

Скажу по собственному опыту, если конечно будет возможность подобрать корпус для устройства, разница в стоимости может быть в 3, 5, и более раз низкой. Да придется потратить вечер на сборку, освоить для себя что-то новое, то чего раньше не знал, но эти знания стоят потраченного времени.

Для знающих людей, радиолюбителей, давно известно, что электроника в частном случае, это не более чем сборка своего рода конструктора ЛЕГО, правда со своими правилами, на освоение которых придется потратить какое-то время.

Зато перед вами откроется возможность самостоятельной сборки, а если потребуется то и починки, любого электронного устройства, начальной, а с приобретением опыта и средней сложности. Такой переход, от электрика к радиолюбителю, бывает облегчен тем, что у электрика уже есть в голове необходимая для изучения база, или хотя бы часть её.

Принципиальные схемы

Перейдем от слов к делу, приведу несколько схем пробников, которые могут быть полезны в работе электрикам, и пригодятся обычным людям при проведении проводки, и других подобных случаях. Пойдем от простого, к сложному. Ниже приведена схема самого простого пробника – аркашки на одном транзисторе:

Этот пробник позволяет прозванивать провода на целостность, цепи на наличие или отсутствие замыкания, а если потребуется, то и дорожки на печатной плате. Диапазон сопротивлений прозваниваемой цепи широкий, и составляет от нуля до 500 и более Ом.

В этом отличие этого пробника от аркашки, содержащей только лампочку с батареей питания, или светодиод, включенный с батареей, который не работает с сопротивлениями от 50 Ом. Схема очень простая и её можно собрать даже навесным монтажем, не утруждая себя травлением и сборкой на печатной плате.

Хотя если есть в наличии фольгированный текстолит, и позволяет опыт, лучше собрать пробник на плате.

Практика показывает, что устройства собранные навесным монтажом, могут перестать работать после первого падения, тогда как на устройстве, собранном на печатной плате, это никак не скажется, если конечно пайка была произведена качественно. Ниже приведена печатная плата этого пробника:

Изготовить её можно как путем травления, так и ввиду простоты рисунка, путем отделения дорожек на плате друг от друга бороздкой, прорезанной резаком, сделанным из ножовочного полотна. Изготовленная таким способом плата, будет по качеству не хуже протравленной. Конечно перед подачей питания на пробник, нужно убедиться в отсутствии замыкания между участками платы, например путем прозвонки.

Второй вариант пробника, который совмещает в себе функции прозвонки позволяющей прозванивать цепи до 150 килоОм, и подходящий даже для проверки резисторов, катушек пускателей, обмоток трансформаторов, дросселей и тому подобного.

И индикатора напряжения, как постоянного, так и переменного тока. При постоянном токе показывается напряжение уже от 5 вольт и до 48, возможно и более, не проверял. Переменный ток показывает 220 и 380 вольт легко.

Ниже приведена печатная плата этого пробника:

Индикация осуществляется путем загорания двух светодиодов, зеленого при прозвонке, и зеленого и красного при наличии напряжения.

Также пробник позволяет определить полярность напряжения при постоянном токе, светодиоды горят только при подключении щупов пробника в соответствии с полярностью.

Одним из плюсов прибора является полное отсутствие, каких либо переключателей, например предела измеряемого напряжения, либо режимов прозвонка – индикация напряжения. То есть прибор работает сразу в обоих режимах. На следующем рисунке можно видеть фото пробника в сборе:

Мной было собрано 2 таких пробника, оба до сих пор работают нормально. Одним из них пользуется мой знакомый.

Третий вариант пробника, который может только прозванивать цепи, провода, дорожки на печатной плате, но не может использоваться, как индикатор напряжения, является Звуковой пробник, с дополнительной индикацией на светодиоде. Ниже приведена его принципиальная схема:

Все, думаю, пользовались звуковой прозвонкой на мультиметре, и знают насколько это удобно. Не нужно при прозвонке смотреть на шкалу или дисплей прибора, либо на светодиоды, как это было сделано в предыдущих пробниках.

Если цепь у нас звонится, то раздается пищание с частотой примерно 1000 Герц и загорается светодиод.

Причем этот прибор, также как и предыдущие позволяет прозванивать цепи, катушки, трансформаторы и резисторы с сопротивлением до 600 Ом, чего бывает достаточно в большинстве случаев.

На рисунке выше приведена печатная плата звукового пробника. Звуковая прозвонка мультиметра, как известно, работает только при сопротивлениях, максимум до десятка Ом или немногим больше, этот прибор позволяет прозванивать значительно в большем диапазоне сопротивлений. Далее можно видеть фото звукового пробника:

Для подключения к измеряемой цепи, этот пробник имеет 2 гнезда, совместимых с щупами мультиметра. Все три пробника, про которые было рассказано выше, я собирал сам, и гарантирую что схемы 100% рабочие, не нуждаются в настройке и начинают работать сразу после сборки.

Фото первого варианта пробника показать не представляется возможным, так этот пробник был не так давно подарен знакомому. Печатные платы всех этих пробников для программы sprint–layout можно скачать в архиве в конце статьи.

Также, в журнале Радио и на ресурсах в интернете, можно найти множество других схем пробников, идущих иногда сразу с печатными платами. Вот только некоторые из них:

Прибор не нуждается в источнике питания и работает при прозвонке от заряда электролитического конденсатора. Для этого щупы прибора нужно воткнуть на короткое время в розетку.

При прозванивании горит LED 5, индикация напряжения LED4 – 36 В, LED3 – 110 В, LED2 – 220 В, LED1 – 380 В, а LED6 это индикация полярности.

Похоже, что этот прибор по функциональности, аналог приведенного в начале статьи на фото пробника монтера.

На рисунке выше показана схема пробника – фазоуказателя, который позволяет находить фазу, прозванивать цепи до 500 килоОм, и определять наличие напряжения до 400 Вольт, а также полярность напряжения.

От себя скажу, что возможно пользоваться таким пробником менее удобно, чем тем, про который было рассказано выше и который имеет для индикации 2 светодиода. Потому что нет четкой уверенности в том, что показывает этот пробник в данный момент, наличие напряжения или то, что цепь звонится.

Из его плюсов могу могу упомянуть только, что им можно определить, как уже было написано выше, фазный провод.

И в заключение обзора приведу фото и схему простейшего пробника, в корпусе маркера, который я собрал давным давно, и который может собрать любой школьник или домохозяйка, если возникнет такая необходимость 🙂 Этот пробник пригодится в хозяйстве, если нет мультиметра, для прозвонки проводов, определения работоспособности предохранителей и тому подобных вещей.

На рисунке выше приведена нарисованная мною схема этого пробника, так чтобы его мог собрать любой человек, даже не знающий школьного курса физики. Светодиод для этой схемы нужно взять советский, АЛ307, который светится от напряжения в 1.5 Вольта. Думаю, прочитав это обзор, каждый электрик сможет выбрать себе пробник по вкусу, и по степени сложности. Автор статьи AKV.

Пробник и тестер для самостоятельного ремонта электрооборудования автомобиля, выбор, схема логического пробника

К контрольным и измерительным приборам которые чаще всего применяются при поиске неисправностей и самостоятельном ремонте электрооборудования автомобиля с напряжением бортовой сети 12 вольт, можно отнести пробник и тестер.

Использование пробника и тестера позволит избежать расходов по замене случайно испорченного электронного оборудования автомобиля, стоимость которого гораздо выше стоимости этих контрольных и измерительных приборов.

Простой пробник на лампе

По своей сути является обычной маломощной автомобильной лампой, помещенной в корпус со щупом.

Лампа позволяет определить наличие напряжения, имитировать сигналы некоторых электронных систем автомобиля — центральный замок, концевые выключатели, включение габаритов и поворотов в некоторых автомобилях. Мощность используемой в таком пробнике лампы не должна превышать 2 Вт, ток не более 0,2 А.

Для использования пробника, его зажим-крокодил присоединяется к массе, а щуп — к контакту проверяемой цепи. При наличии «плюса» в проверяемой цепи лампа будет гореть.

Не рекомендуется использовать такой простой пробник при поиске неисправностей и ремонте электрооборудования современных автомобилей. Можно случайно вывести из строя электронику, подключая ее к маломощным цепям.

Например, это может произойти при подаче сигнала на какой-нибудь датчик.

Светодиодный логический пробник

Логический пробник обычно используется для контроля наличия напряжения в проверяемой цепи, поиска необходимых цепей, для приблизительной оценки сопротивления участка цепи. Простейший логический пробник можно собрать самому по прилагаемой ниже схеме, но его нельзя будет использовать в сетях с напряжением выше 20 Вольт.

Схема простого логического пробника для проверки и ремонта электрооборудования автомобиля

Элементы схемы простого логического пробника :

1. Светодиоды используются любые. VD1 — красный, VD2 — зеленый. 2. Резисторы должны иметь сопротивление : R1 = 1 кОм, R2 = 200 Ом.

3. Для питания можно применить две батарейки или аккумулятора типа АА. Для уменьшения размера пробника можно заменить их на малогабаритные литиевые батарейки.

4. В качестве контактов можно использовать швейную иглу для X1, она удобна для прокалывания изоляции провода, и зажим типа «крокодил» с проводом длиной 70-80 сантиметров для X2.

5. В качестве корпуса подойдет любая подходящая пластиковая коробка или пенал.

Простой пробник – прозвонка своими руками

Начало.

Часто бывает необходимо в куче проводов найти куда какой идет, узнать целостность цепи, проверить, если ли короткое замыкания или же обрыв, также часто нужно узнать целостность p-n перехода диодов, транзисторов и прочих полупроводником, в этом нам поможет такой инструмент как прозвонка. Она будет несомненно полезна как электрику, так и электронику. Дело в том, что пользоваться режимом прозвонки в мультиметре не всегда бывает удобно, а в некоторых из них вообще отсутствует эта функция, так что такая простая прозвоночка решит эту проблему.

Прозвонка очень практичная, ее тон звучания зависит от сопротивления проверяемого участка цепи.

Чем больше сопротивление – тем реже щелчки, соответственно при маленьком сопротивлении щелчков будет очень много и они будут слышаться как писк, тональность которого можно настроить номиналами: То бишь на уже готовой плате с впаянными компонентами можно легко найти короткое замыкание, а p-n переходы мы будем слышать не как КЗ, тональность будет отличаться. А если немного приловчиться, то по звуку с легкость возможно сказать где у транзистора эмиттер, а где коллектор (у второго щелчков больше).

Корпус.

Корпус – тоже очень важен, от него будет зависеть насколько приятно будет пользоваться прибором, все-таки эстетика важна. Кроме этого он будет защищать платку и элемент питания от суровых условий повседневной жизни человека работающего с электричеством.

Мною был взят корпус от АТБшного маркера, в него идеально входит один элемент АА и ещё остается место для платы, да и выглядит он хорошо для этих целей.

В качестве щупов кучок медного провода в эмали и цилиндрической кусочек медь, а именно старое жало паяльника, этот цветной металл имеет малое сопротивление и более-менее хорошо переносит O2, особенно с припоем:) На самой плате жало закрепляется расплавленным оловом на определенном участке меди.

На картинке вы можете увидеть, как устроена прозвонка изнутри, сначала идет щуп, который отходит от платы, далее сама плата прозвонки, потом батарейка/аккумулятор, который плотно закрепляется “затычкой”.

Также тут присутствует динамик – это элемент индикации, для громкого воспроизводения звука много дырочек, через которые он колышет воздух. (он не нарисованы!)

Компоненты и замены.

Значения параметров всех применяемых в этой схеме деталей не критично и может варьироваться, например нету резистора 51к, а есть 47к – то смело ставьте его. Все транзисторы – любые, главное чтобы структура совпадала (3 – НПН, 1 – ПНП).

Маркировка: BC847– 1G, BC857–3F(и Nсбоку).

Уведомители.

Динамик конечно же берется миниатюрный – такой как в наушниках. Сопротивление его обычно16 Ом, а громкость вполне достаточная. У меня был в наличии громкоговоритель (speaker)из старой Нокии 6303Ай, весьма хороший телефон нужно отметить. Его я приклеил на обратную сторону платы термоклеем, она выступала в роле резонатора.

Если вы работаете в таком месте где очень шумно, то следует параллельно звукоизлучателю поставить светодиод, который и будет служить световой индикацией.

Питание.

Питание прозвонки – пальчиковая батарейка 1,5 Вольта, если увеличить это значение, то появиться возможность проверять и светодиоды, к тому же громкость звука значительно возрастет. Но в таком случае высокое напряжение может повредить некоторые чувствительные радиодетали.

Добавляем чувствительности.

Хотите супер-мега чувствительность? Тогда отключите электролитический конденсатор С1. Теперь если просто дотронемся до щупов прибора, то он уже начнет бурно на это реагировать. Не знаю зачем, но если хотите такой бешеный режим то поставьте микро-кнопку на один из выводов конденсатора.

А лучше вот вам вообще эта же, но немного измененная схема, таким образом у нас получится два режима: очень маленькая чувствительность и супер-чувствительность до 120 Мом. Между ними можно легко переключаться с помощью кнопок S1 и S2.

Фото.

(готовая плата с щупом и пружиной, вид сбоку)

(полностью готовая и рабочая прозвонка)

Плата и другие файлы.

Тут можете скачать архив

Видеодемонстрация работы.

Вывод.

Схема прозвонки в общем-то несложна, но весьма полезна. Она незаменимая и очень нужная вещь для любого человека, работающего с электричеством.

Корпус выбираете сами, тут ваша фантазия безгранична – от полипропиленовых труб до мини-мыльницы, мой выбор меня очень даже устроил. Звук вышел громкий и главное информативный.

Также нужно заметить, что пока шупы не замкнуты – потребление тока равно нулю, а это очень экономично.

Половина успеха автоэлектрика — инструменты: что должно быть в арсенале специалиста?

Самодельный пробник из медицинского шприца, гвоздя и лампочки

Инструмент автоэлектрика включает в себя такие компоненты и устройства:

  1. Пробник автоэлетрика с лампой. На первый взгляд может показаться, что такие девайсы уже отжили свое, однако на практике с их помощью можно решить множество вопросов. Предназначение устройства заключается в диагностике наличия тока в электроцепи, поэтому такой пробник может использоваться для многих задач.
  2. Более мощный пробник, как видно по фото, в нем используется мощная лампочка, по сравнению с вышеописанным устройствам. Предназначение у него аналогичное, только благодаря использованию более мощной лампочки этот инструмент автоэлектрика позволяет проверять не только наличие напряжение на участке цепи, но и выявлять плохие контакты, а также возможные короткие замыкания.
  3. В арсенале каждого электрика должен быть длинный кабель, использующийся для подвода питания к поврежденному участку. Крокодил провода подключается к положительному выводу АКБ, такое устройство используется для поиска короткого замыкания в электросети. Чтобы обеспечить надежную работу тестера, провод должен быть защищен предохранительным элементом.
  4. Профессиональный инструмент автоэлектрика — мультиметр. Если вы решили заняться ремонтом проводки, то можно купить тестер начального уровня, он позволяет измерять параметры сопротивления, постоянного напряжения и тока. При этом величина измерения постоянного тока должна быть не меньше 20 ампер, в более дешевых приборах этого не будет. Если вы покупаете устройство китайского производства, то со временем, вероятнее всего, столкнетесь с необходимостью установки новых щупов. Поскольку стандартные, как показывает практика, работают недолго.
  5. Также инструмент автоэлектрика должен включать в себя прочий инструментарий, в частности, паяльник с расходными материалами, плоскогубцы, отвертки, гаечные ключи, изоленту и т.д.

Инструкция по изготовлению тестера

Если вам нужно устройство для измерения наличие напряжения в бортовой сети, то необязательно тратиться на дорогой тестер. Для начала можно попытаться соорудить свой простейший автомобильный пробник на светодиодах или с обычно лампочкой накаливания. Мы расскажем о том, как сделать простой тестер из лампочки и шприца, как на фото вначале статьи (автор видео — Вячеслав Чистов).

Этапы

Процедура изготовления устройства выглядит следующим образом:

  1. Для начала вам потребуется обычный медицинский шприц, который можно приобрести в любой аптеке. Разумеется, берем не маленький, а шприц побольше — на 10 или 20 кубов.
  2. Возьмите небольшой гвоздь и установите его в корпус подготовленного ранее шприца. Для этого верхнюю, движущуюся часть шприца (не колбу) необходимо демонтировать, а гвоздь установить вместо иглы. При этом его шляпка должна быть надежно зафиксирована в отверстии. Перед установкой убедитесь в том, чтобы гвоздь был максимально заточен, он не должен быть тупым.
  3. К концу гвоздя необходимо припаять либо светодиодный элемент, либо обычную лампочку накаливания, мощность которой составляет 1 Вт. Для этого используйте паяльник с оловом и канифолью. Лампочка должна быть наиболее надежно зафиксирована, чтобы со временем она не отвалилась.
  4. К другом концу диода или обычной лампочки необходимо подпаять проводок с заранее установленным на него зажимом («крокодилом»). Здесь также должно быть надежное и прочное соединение, чтобы не допустить ускоренного износа конструкции.
  5. Полученную конструкцию пробника можно залить эпоксидной смолой, чтобы обеспечить его безопасность и надежность. Выполнив все эти действия, вы получите полноценный пробник, который позволит определить наличие напряжения в электросети авто. Если по каким- то причинам устройство не работает, проверьте качество пайки всех компонентов и работоспособность самой лампочки или светодиода.

Цена вопроса

1. Профессиональная контролька UR-MAX AVM-1 PRO (цена — около 2500 рублей)2. Более простая модель тестера UR-MAX AVM-1 Light (цена — около 1300 рублей)3. Мультиметр модели DT-830B (цена — 400 рублей)

Видео «Наглядная инструкция по изготовлению светодиодного пробника»

Как в домашних условиях соорудить светодиодный пробник из подручных материалов — подробная и наглядная инструкция приведена на видео ниже (автор ролика — Автоэлектрика и различная электроника).

Индикатор напряжения на светодиодах своими руками

Проверка напряжения в цепи – процедура, необходимая при выполнении различного рода работ, связанных с электричеством. Некоторые любители-электрики, а иногда и профессионалы пользуются для этого самодельной «контролькой» – патроном с лампочкой, к которому подсоединены провода.

Хотя такой метод запрещен «Правилами безопасной эксплуатации электроустановок потребителей», он достаточно эффективен при грамотном использовании. Но все же в этих целях лучше пользоваться светодиодными определителями – пробниками. Их можно купить в магазине, а можно изготовить самостоятельно.

В этой статье мы расскажем, для чего нужны эти приборы, по какому принципу они работают и как изготовить индикатор напряжения на светодиодах своими руками.

Для чего нужен логический пробник?

Это устройство с успехом применяется, когда необходимо произвести предварительную проверку работоспособности элементов простой электрической схемы, а также для первичной диагностики несложных приборов – то есть в тех случаях, когда не требуется высокая точность измерений. С помощью логического пробника можно:

  • Определить наличие в электроцепи напряжения величиной 12 – 400 В.
  • Определить полюса в цепи постоянного тока.
  • Произвести проверку состояния транзисторов, диодов и других электрических элементов.
  • Определить фазную жилу в электроцепи переменного тока.
  • Прозвонить электрическую цепь для проверки ее целостности.

Пробник электрика: принцип работы и изготовление

Простой определитель на двух светодиодах и с неоновой лампочкой, получивший среди электриков название «аркашка», несмотря на несложное устройство, позволяет эффективно определять наличие фазы, сопротивления в электроцепи, а также обнаруживать в схеме КЗ (короткое замыкание). Универсальный пробник для электрика в основном используется для:

  • Диагностики на обрыв катушек и реле.
  • Прозвонки моторов и дросселей.
  • Проверки выпрямительных диодов.
  • Определения выводов на трансформаторах с несколькими обмотками.

Это далеко не полный перечень задач, которые решают с помощью пробника. Но и перечисленного достаточно, чтобы понять, насколько полезно это устройство в работе электромонтера.

В качестве источника питания для этого устройства используется обычная батарейка с показателем напряжения 9 В. Когда щупы тестера замкнуты, величина потребляемого тока не превышает 110 мА. Если же щупы разомкнуты, то устройство не потребляет электроэнергию, поэтому ему не нужен ни переключатель режима диагностики, ни выключатель энергопитания.

Пробник способен выполнять свои функции в полной мере, пока напряжение на источнике питания не падает ниже 4 В. После этого его можно использовать в качестве указателя напряжения в цепях.

Во время прозвонки электрических цепей, показатель сопротивления которых составляет 0 – 150 Ом, загорается два светоизлучающих диода – желтого и красного цвета.

Если показатель сопротивления составляет 151 Ом – 50 кОм, то светится только желтый диод.

Когда на щупы прибора подается напряжение сети величиной от 220 В до 380 В, начинает светиться неоновая лампа, одновременно с этим наблюдается легкое мерцание LED-элементов.

Схема этого индикатора напряжения имеется в интернете, а также в специализированной литературе. Изготавливая такой пробник своими руками, его элементы устанавливают внутри корпуса, который изготовлен из изоляционного материала.

Зачастую для этих целей используется корпус от ЗУ любого мобильного телефона или планшетного компьютера. С передней части корпуса следует вывести штырь-щуп, с торцевой – качественно изолированный кабель, конец которого снабжен щупом или зажимом-«крокодильчиком».

Сборка простейшего пробника напряжения со светодиодным индикатором – на следующем видео:

Как изготовить эвуковой пробник электрика своими руками?

У некоторых запасливых любителей в «арсенале» можно найти множество полезных вещей, в том числе и наушник (капсюль) для телефона ТК-67-НТ.

На базе такой детали может быть собран несложный звуковой пробник.

В первую очередь нужно разобрать телефонный капсюль и отсоединить катушки друг от друга. Это нужно для того, чтобы освободить их выводы.

Элементы размещаются в наушнике под звуковой мембраной, около катушек.

После сборки электрической цепи мы получим вполне рабочий определитель со звуковой индикацией, который возможно применять, к примеру, в целях проверки дорожек печатных схем на взаимное перемыкание.

База такого пробника – электрогенератор с индуктивной противоположной взаимосвязью, основными деталями которого является телефон и транзистор малой мощности (лучше всего германиевый).

Если такого транзистора у вас нет, то можно воспользоваться другим, обладающим проводимостью N-P-N, однако в этом случае полярность включения источника электропитания следует поменять.

Если включить генератор не получается, выводы одной (любой) катушки нужно поменять между собой местами.

Увеличить громкость звука можно, выбрав частоту электрогенератора таким образом, чтобы она была максимально приближена к резонансной частоте наушника. Для этого мембрану и сердечник нужно расположить на соответствующем расстоянии, изменяя интервал между ними до получения нужного результата. Теперь вы знаете, как сделать индикатор напряжения на базе телефонного наушника.

Наглядно изготовление и использование простейшего пробника напряжения на видео:

Заключение

В этом материале мы рассказали, как индикатор напряжения на светодиодах можно собрать своими руками, а также рассмотрели вопрос изготовления простого диагностического прибора на базе звукового наушника.

Как видите, самостоятельно собрать светодиодный индикатор, как и звуковой определитель, достаточно несложно – для этого достаточно иметь под рукой паяльник и нужные детали, а также обладать минимальными электротехническими знаниями. Если же вы не очень любите самостоятельно собирать электрические устройства, то при выборе прибора для несложной диагностики стоит остановиться на обычной индикаторной отвертке, которая продается в магазинах.

Как своими руками сделать тестер

Любителям сделать все своими руками предлагается простой тестер на основе микроамперметра М2027-М1, у которого диапазон измерения 0-300 мкА, внутреннее сопротивление 3000 Ом, класс точности 1,0.

Необходимые детали

Это тестер, имеющий магнитоэлектрический механизм для измерения тока, поэтому он мерит только постоянный ток. Подвижная катушка со стрелкой крепится на растяжках.

Применяется в аналоговых электроизмерительных приборах. Найти на блошином рынке или купить в магазине радиодеталей проблем не составит.

Там же можно приобрести и остальные материалы и компоненты, а также приставки к мультиметру. Кроме микроамперметра потребуется:

  • десяток постоянных резисторов;
  • один переменный резистор;
  • гнездовой разъем на 12-16 контактов;
  • кусок одностороннего стеклотекстолита;
  • пара метров медного многожильного провода сечением 1 кв. мм;
  • 40 см одножильного медного провода сечением 4 кв. мм;
  • припой, канифоль, паяльник на 60 Вт.

Если человек решил сделать себе мультиметр своими руками, значит, других измерительных приборов у него нет. Исходя из этого, и будем дальше действовать.

Выбор диапазонов измерения и вычисление номиналов резисторов

Определим для тестера диапазон измеряемых напряжений. Выберем три самых распространенных, покрывающих большинство потребностей радиолюбителя и домашнего электрика. Это диапазоны от 0 до 3 В, от 0 до 30 В и от 0 до 300 В.

Максимальный ток, проходящий через самодельный мультиметр равен 300 мкА. Поэтому задача сводится к подбору добавочного сопротивления, при котором стрелка отклонится на полную шкалу, а на последовательную цепочку Rд+ Rвн будет подано напряжение, соответствующее предельному значению диапазона.

То есть на диапазоне 3 В Rобщ=Rд+Rвн= U/I= 3/0,0003=10000 Ом,

где Rобщ – это общее сопротивление, Rд – добавочное сопротивление, а Rвн – внутреннее сопротивление тестера.

Rд=Rобщ-Rвн=10000-3000=7000 Ом или 7кОм.

На диапазоне 30 В общее сопротивление должно быть равно 30/0,0003=100000 Ом

Rд=100000-3000=97000 Ом или 97 кОм.

Для диапазон 300 В Rобщ=300/0,0003=1000000 Ом или 1 мОм.

Rд=1000000-3000=997000 Ом или 997 кОм.

Для измерения токов выберем диапазоны от 0 до 300 мА, от 0 до 30 мА и от 0 до 3 мА. В этом режиме шунтирующее сопротивление Rш подсоединяется к микроамперметру параллельно. Поэтому

А падение напряжения на шунте равно падению напряжения на катушке тестера и равно Uпр=Uш=0,0003*3000=0,9 В.

Отсюда в интервале 0…3 мА

В диапазоне 0…30 мА Rобщ=U/I=0,9/0,030=30 Ом.

Отсюда в интервале 0…300 мА Rобщ=U/I=0,9/0,300=3 Ом.

Подгонка и монтаж

Чтобы сделать тестер точным, нужно подогнать номиналы резисторов. Эта часть работы самая кропотливая. Подготовим плату для монтажа. Для этого надо расчертить ее на квадратики размером сантиметр на сантиметр или немного меньше.

Затем, сапожным ножом или чем-нибудь подобным по линиям прорезается медное покрытие до основы из стеклотекстолита. Получились изолированные контактные площадки. Отметили, где будут расположены элементы, получилось подобие монтажной схемы прямо на плате.

В дальнейшем, к ним будут припаяны элементы тестера.

Чтобы самодельный тестер выдавал правильные показания с заданной погрешностью, все его компоненты должны иметь характеристики по точности такие же, как минимум, и даже выше.

Внутреннее сопротивление катушки в магнитоэлектрическом механизме микроамперметра будем считать равным заявленным в паспорте 3000 Ом.

Количество витков в катушке, диаметр провода, электропроводность металла, из которого сделана проволока известны. Значит, данным завода-изготовителя верить можно.

А вот напряжения батареек на 1,5 В могут немного отличаться от заявленных производителем, а знание точного значения напряжения потом потребуются для измерения тестером сопротивления резисторов, кабелей и других нагрузок.

Определение точного напряжения батарейки

Для того чтобы самому выяснить действительное напряжение батарейки потребуется хотя бы один точный резистор номиналом 2 или 2,2 кОм с погрешностью 0,5%.

Этот номинал резистора выбран из-за того, что при последовательном подключении с ним микроамперметра, общее сопротивление цепи составит 5000 Ом.

Следовательно, проходящий через тестер ток будет около 300 мкА, и стрелка отклонится на полную шкалу.

Если тестер покажет, к примеру, 290 мкА, значит, напряжение батареи равно

Теперь зная точное напряжение на батарейках, имея одно точное сопротивление и микроамперметр можно подобрать необходимые номиналы сопротивления шунтов и добавочных резисторов.

Сбор блока питания

Блок питания для мультиметра собирается из двух последовательно соединенных батареек по 1,5 В. После этого к нему подключается последовательно микроамперметр и предварительно отобранный по номиналу резистор в 7 кОм. Тестер должен показать значение близкое к предельному току.

Если прибор зашкалит, то последовательно к первому резистору необходимо подсоединить второй, маленького номинала, Если показания меньше 300 мкА, то параллельно к этим двум резисторам, подключают сопротивление большого номинала. Это уменьшит общее сопротивление добавочного резистора.

Такие операции продолжаются до тех пор, пока стрелка не установится на пределе шкалы в 300 мкА, что сигнализирует о точной подгонке.

Для подбора точного резистора на 97 кОм, выбираем ближайший, подходящий по номиналу, и проделываем те же процедуры, что и с первым на 7 кОм. Но так как здесь необходим источник питания 30 В, то потребуется переделка питания мультиметра из батарей на 1,5 В.

Собирается блок с выходным напряжением 15-30 В, на сколько хватит. К примеру, получилось 15 В, тогда всю подгонку делают из расчета, что стрелка должна стремится к показанию 150 мкА, то есть к половине шкалы.

Это допустимо, так как шкала тестера при измерении тока и напряжения линейная, но желательно работать с полным напряжением.

Номиналы резисторов: R1=3 Ом, R2=30,3 Ом, R3=333 Ом, R4 переменный на 4,7 кОм, R5=7 кОм, R6=97 кОм, R7=997 кОм. Подбираются подгонкой. Питание 3 В. Монтаж можно сделать навеской элементов прямо на плате. Разъем можно установить на боковой стенке коробки, в которую врезается микроамперметр. Щупы изготавливаются из одножильного медного провода, а шнуры к ним из многожильного.

Подключение шунтов осуществляется перемычкой. В результате из микроамперметра получается тестер, которым можно мерить все три основных параметра электрического тока.

Пробник автоэлектрика

Данная конструкция, на вид очень простая, была когда то для меня самым нужным в работе инструментом. Работал я тогда в одном депо электромехаником. Ремонтировать приходилось путевые машины, электрооборудование которых было разное.

Были машины с 24 вольтовой борт сетью, как на большегрузных автомобилях. Были машины и дизель-электрические, с напряжением 380 вольт. Вот тогда и сконструировал я для себя этот пробник.

Что-бы тестер с собой не таскать, да и если спалишь его, не так жалко.

Теперь о конструкции. Пробник охватывает диапазон измеряемых напряжений от 12 вольт до 380. При 12 вольтах светит светодиод HL2, при 24 – HL2 и HL4. Ну и от переменки в 220 – 380 вольт светят все 3 светодиода. Причем на переменке полярность подключения не важна. На постоянке цепляем крокодил на массу и измеряем, вернее проверяем наличие напряжения.

Конечно же пробник умеет прозванивать цепи. Индикация как светодиодами, так и звуковым сигналом. Причем при малом сопротивлении, где то до 20 – 50 Ом, горят 2 светодиода HL1 и HL2.

При более большом сопротивлении только HL2. В общем, приблизительно можно определить сопротивление. Главное не нажать кнопочку при измерении напряжения.

Для этого ее нужно утопить как можно глубже, затруднив доступ к ней.

Такой пробник вещь конечно специфическая, а вот другой пробник я настоятельно советую всем автолюбителям. В данной конструкции все упрощено до предела, крокодильчик на массу цепляй и измеряй. Пробник сам покажет, напряжение в цепи или сопротивление.

Особенно интересно поворотники проверять, когда на пробнике то одни светодиоды загораются то другие. Если конечно все исправно, ну а если не горит, то уже легко сообразить чего нет. Измерение сопротивления сделано как у предыдущего пробника. Индикация напряжения одним светодиодом.

Пунктиром показано добавление светодиода для измерения 24 вольт.

Заряжать аккумуляторы первого пробника можно вот этим зарядным устройством. Для второго пробника предусмотрена возможность заряда от аккумулятора автомобиля. Достаточно воткнуть пробник в розетку автомобиля, если она имеется и оставить на ночь.

Зарядка производится через резистор R2, который нужно подобрать под емкость аккумуляторов. А можно и не подбирать, оставить так как есть. Зарядный ток порядка 15 миллиампер. Да и места такой пробник занимает мало. Кинул его в бардачок, и пускай он там лежит до поры. Вот такие вот простенькие , но очень полезные конструкции.

Так что если любите что то делать своими руками, это самое то. Конструкция выходного дня.

А так он выглядит.

Как сделать индикатор для проверки проводки в автомобиле

Очень часто в автомобиле приходится проверять проводку и в следствии того что напряжение сети всего 12 Вольт (постоянного тока), обычные средства, такие как отвертка-индикатор с неоновой газоразрядной лампочкой.

Такие индикаторы обычно рассчитаны на срабатывание при минимальном напряжении 60 Вольт. При этом разряд в таких лампах возможен только при наличии переменного тока.

Для проверки цепей автомобильной проводки можно испольовать обычную автомобильную лампочку 12 Вольт с нитью накала. Лампочку лучше всего подключить через цоколь и к нему припаять длинные провода.

Автомобильная лампа с маленьким отражателем для проверки целостности электрических цепей автомобиля

Мощность лампочки может быть любая, но лучше как можно меньше. С маломощной лампочкой удобнее работать, она не бьет в глаза и не сильно греется, как вы помните мы будем ее использовать только как индикатор.

Итак длинными проводами вы можете подключать лампочку даже к клеммам аккумулятора.

Принцип тестирования заключается в том что один контакт лампочки подключается например к минусу (массе) автомобиля. Можно прямо на клеммах, можна на элементах корпуса.

Вторым контактом мы подключаемся к разным контактам и смотрим когда загорится лампа. Если лампа загорелась мы можем с точностью сказать что на данном контакте есть напряжение 12 Вольт.

По накалу нити лампочки мы можем определить качество контакта. Если провод где то поврежден или плохо подключен, лампа может гореть не в полный накал. Таким образом можно отметить все контакты которые имеют + (положительный потенциал), после чего можно проделать обратную операцию.

Один контакт подключаем к плюсовой клемме аккумулятора или к одному из найденых контактов на которых всегда присутсвует положительный потенциал (+ 12 Вольт).

Вторым контактом мы касаемся всех оставшихся контактов и находим все контакты на которых есть масса (- 12 Вольт) их тоже помечаем.

Все оставшиеся контакты мы помечаем как пусты. На этих контактах нет потенциала, они попросту висят в воздухе. Распределив все контакты по местам вы можете выяснить при каких обстоятельствах на каких контактах появляется потенциал и насколько хорошо они пропускают электрический ток.

Если вам трудно вопспринимать накал лампы как индикатор, то можно сделать звуковой индикатор.

Часто такие ситуации возникают когда вы роетесь под приборной панелью или скажем в подкапотном пространстве. Расположить лампочку индикатор так что бы вам всегда было ее видно очень сложно.

В этом случае вам поможет пьезо-звуковой генератор или в простонародии “пищалка”. Это маленький излучатель звука со встроенным внутри генератором звука. При подключении к контактам такого излучателя напряжения он издает звук.

Звуковой пъезо-электрический генератор, для тестирования электрических цепей автомобиля

Важно пометить один из контактов излучателя, так как при подключении нужно соблюдать полярность. Можно просто подключить один контакт красного цвета а другой синего или черного.

Проверка пъезо-электрического звукового генератора на 12 Вольт для проверки проводки в автомобиле

Теперь подключив минусовой провод пищалки к массе автомобиля вы можете прозванивать все плюсы. И наоборот подключив плюсовой контакт к плюсовой клемме автомобиля вы можете проверять наличие массы на контактах проводки.

Плюс таких звуковых генераторов в том что они изготавливаются сразу с генератором определенной частоты и рассчитаны на входное напряжение 12 Вольт (именно такие вам надо спрашивать в магазинах электроники).

Если такой найти не удается очень часто такие пищалки установлены в китайских будильниках. Если у вас есть старый будильник вы можете вынять пищалку из него.

. не забывайте что для того что бы подключить такой генератор звука к сети 12 Вольт вам нужно будет подобрать сопротивление, так как в будильнике напряжение сети обычно не превышает 1,5 Вольта.

Так же в будильник не всегда устанавливаются пищалки с генератором звука, сам генератор может быть расположен на плате самого будильника. Но попытка не пытка.

Для более удобного и быстрого определения всех контактов можно изготовить компактную отвертку индикатор.

Для этого нам понадобяться два светодиода – обязательно двух разных цветов

Разноцветные светодиоды 1,5 Вольта с сопротивлениями 100 Ом для подключения к сети автомобиля напряжением 12 Вольт

Два сопротивления 100 Ом желательно мощностью не менее 1 Ватта.

Светодиоды обладают замечательным свойством полупроводниковых диодов, они проводят электричество только в одну сторону. Соответственно и горят они только если к ним в правильном порядке подключить плюс и минус.

Мы используем это свойство диодов и подключим диоды встречно – тоесть при протекании тока в одну сторону будет гореть скажем красный диоды а в обратную сторону зеленый.

Светодиоды рассчитаны обычно на напряжение всего 3 Вольта, а в сети нашего автомобиля как мы помним напряжение 12 Вольт.

К ножке каждого диода нам нужно припаять сопротивление 100 Ом, после чего проверить их полярность.

Определив полярности отметьте + (плюсовые) контакты на каждом дидоде и соедините их встречно – тоесть что бы + плюс одного диода был соединен с – минусом другого.

Два светодиода красного и зеленого цвета спаяных встречно для определения полярности тестируемых цепей

Теперь соедините получившихся два контакт с плюсом и минусом аккумулятора. Должен загорется один из диодов. Если вы поменяете контакты на клеммах аккумулятора загорится другой светодиод.

Проверка встречно подключенных светодиодов для проверки полярности и целостности электрических цепей автомобиля

Далее вы можете взять старую отвертку индикатор, вынуть изнутри неоновую лампу и вставить туда диоды.

Разобраный индиктор для тестирования сетей переменного тока 220 Вольт – неоновая лампа, прокладка и торцевой контакт

Необходимо что бы контакты которыми вы всовываете диоды внутрь коснулись вывода острия отвертки.

Для плотного соединения вы можете натолкать внутрь не сильно спресованной фольги. Вставляя в нее контакт он плотно зафиксируется в фольге и соответственно обеспечит плотный контакт с острием отвертки.

Второй контакт необходимо вывести сзади отвертки. Можно припаять или как то прикрутить его к кольцу которое раньше предназналочь для касания пальцем, для того что бы создать потенциал на неоновой лампе.

В нашем случае теперь к кольцу на торце отвертки вы можете подключить контакт относительно которого вы будете проверять все остальные контакты.

Рекомендуем вам так же сделать простенькие удлинители с крокодильчиками. Так вы можете накинуть один крокодильчик на торцевую часть отвертки а другим касаться разных контактов определяя на них потенциал.

Соединительный провод с крокодильчиками для временных соединений

Тестирования производится так же как с обычной лампочкой описанное выше. Вы подключаете к примеру минус к торцевой части и проходите по всем контактом определяя все плюсы (горит красный светодиод). Потом наоборот цепляете плюс и проходите по всем контактом отмечая минусы, горит зеленый светодиод.

Два светодиода помогут вам ориентироваться в какую сторону движеться ток, могут быть и неожиданные прозвонки, когда к примеру контакт имеет потенциал и плюсы и минуса – обычно это случается если контакт подключен через делители или сопротивления и к массе и к плюсовому проводу. Такой провод может прозваниваться и на массу и на плюс.

По свечению светодиода так же можно определять насколько качественный контакт вы нашли, но лампочка все-таки более достоверное средство.

Если у вас есть возможность вы так же можете купить самый простой китайский тестер. В любом из этих тестеров обычно есть звуковой индикатор целосности цепи, а так же измеритель сопротивлений.

Измеряя сопротивление вы наиболее точно можете оценить целосность цепи.

Не забывайте так же что любые переносные приборы подключаемые к сети автомобиля такие как – преобразователь напряжения 12 Вольт в 220 Вольт, переносная лампа, пылесос могут послужить вам тестером проводки.

Вы можете подключить один контакт (скажем массу) и вторым контактом просматриват тестируемые контакты, обращая внимание на прибор – работает ли он.

В обшем все в ваших руках, любые експеременты и изобретения делают наш мир лучше.

Более подробно о полном наборе инструментов необходимых для ремонта и диагностики электроники в автомобиле вы можете прочитать ниже – ссылка в блоке похожие статьи.

Если у вас идеи или известные способы реализации приборов для тестирования автомобильных электрических цепей – пишите нам в комменты.

Источник статьи: http://cheboksary-otdelka.ru/remont/avtomobilnyj-tester-probnik-kak-sdelat-svoimi-rukami-shema-konstruktsiya.html

Оцените статью