- Неизвестные и известные факты о зажигание ДВС транспортных средств
- Угол опережения зажигания
- Назначение автоматического октан-корректора «СилычЪ»
- Установка электронного октан-корректора.
- Датчик детонации
- Автоматический октан-корректор «СилычЪ» позволяет:
- Октан корректор для бесконтактного зажигания своими руками
- ОПЕРЕЖЕНИЕ С ОПОЗДАНИЕМ
- Технические характеристики:
Неизвестные и известные факты о зажигание ДВС транспортных средств
Угол опережения зажигания
Одним из важнейших параметров, существенно влияющих на расход топлива, мощность и другие характеристики бензиновых двигателей, является угол опережения зажигания (УОЗ), определяющий момент воспламенения горючей смеси в цилиндрах. Этот параметр имеет сложную многомерную зависимость от температуры, нагрузки и оборотов двигателя, качества
Неправильная настройка угла опережения зажигания может привести к возникновению детонации (взрывного вида сгорания топливной смеси в цилиндре), сопровождающейся возникновением ударных волн. Это существенно снижает как мощность, так и ресурс двигателя, вплоть до разрушения компрессионных колец, задирания цилиндров, прогорания клапанов и поршней, что грозит крупным ремонтом. Однако, чем ближе условия сгорания топливной смеси в двигателе к детонации, тем выше КПД двигателя. Поэтому оптимальная регулировка двигателя соответствует его работе на границе возникновения детонации.
Штатные механические формирователи УОЗ — вакуумный и центробежный, имеют нестабильные временные характеристики, требуют регулярной проверки и тонкой настройки на специальном стенде. В автосервисах такими работами практически никто уже не занимается. Тем не менее, каждый двигатель, в зависимости от регулировок и степени износа, имеет свои особенности по моментам возникновения детонации. Большой вклад вносит и нестабильность качества топлива, приводящая к необходимости настройки зажигания почти после каждой заправки автомобиля.
Существует целый ряд устройств — октан-корректоров, позволяющих подстраивать УОЗ вручную из салона автомобиля. Однако все они обладают рядом недостатков, основным из которых является постоянная необходимость прислушиваться к мотору и по звуку его работы определять необходимость в подстройке. Это нелегко сделать во время движения и шума даже очень опытному водителю.
На сегодняшний день, благодаря использованию различных датчиков, управление моментом зажигания горючей смеси в цилиндрах двигателя наиболее оптимально реализовано в инжекторных системах с микропроцессорным управлением. Двигатели, оборудованные такой системой, мощнее, экологичнее, расходуют меньше топлива и не критичны к качеству бензина. В инжекторных машинах УОЗ изменяется в зависимости от режима движения, а в карбюраторных — нет (точнее — с меньшей зависимостью).
Эта статья посвящена дальнейшему совершенствованию популярной у автолюбителей конструкции октан-корректора. Предлагаемое дополнительное устройство существенно повышает эффективность его применения.
Электронный октан-корректор В. Сидорчука [1], доработанный Э. Адигамовым [2], безусловно, прост, надежен в эксплуатации и обладает отличной совместимостью с различными системами зажигания. К сожалению, у него, как и у других подобных устройств, время задержки импульсов зажигания зависит только от положения ручки установки угла опережения зажигания (УОЗ). Это означает, что установленный угол оптимален, строго говоря, только для одного значения частоты вращения коленчатого вала (или скорости движения автомобиля на той или иной передаче).
Известно, что автомобильный двигатель укомплектован центробежным и вакуумным автоматами, корректирующими УОЗ в зависимости от частоты вращения коленчатого вала и нагрузки двигателя, а также механическим установочным октан-корректором. Фактический УОЗ в каждый момент определен суммарным действием всех этих устройств, а при использовании электронного октан-корректора к полученному результату добавляется еще одно существенное слагаемое.
УОЗ, обеспечиваемый электронным октан-корректором [2], оз.ок=6Nt, где N — частота вращения коленчатого вала двигателя, мин -1 ; t — задержка момента зажигания, вносимая электронным октан-корректором, с. Предположим, что начальная установка механического октан-корректора соответствует +15 град. и при N = 1500 мин -1 оптимальная задержка момента зажигания, установленная электронным октан-корректором, равна 1 мс, что соответствует 9 град. угла поворота коленчатого вала.
При N = 750 мин -1 время задержки будет соответствовать 4,5 град., а при 3000 мин -1 — 18 град. угла поворота коленчатого вала. При 750 мин -1 результирующий УОЗ равен +10,5 град., при 1500 мин -1 — +6 град., а при 3000 мин -1 — минус 3 град. Причем в момент срабатывания узла выключения задержки зажигания (N = 3000 мин -1 ) УОЗ резко изменится сразу на 18 град.
Этот пример проиллюстрирован на рис. 1 графиком зависимости УОЗ () от частоты вращения коленчатого вала двигателя. Штриховой линией 1 показана требуемая зависимость, а сплошной ломаной 2 — фактически получаемая. Очевидно, что оптимизировать работу двигателя по углу опережения зажигания этот октан-коррекор способен только при длительном движении автомобиля с неизменной скоростью.
Вместе с тем имеется возможность путем несложной доработки устранить этот недостаток и превратить октанкорректор в устройство, позволяющее поддерживать требуемый УОЗ в широких пределах частоты вращения коленчатого вала. На рис. 2 представлена принципиальная схема узла, которым необходимо дополнить октан-корректор [2].
Узел работает следующим образом. Импульсы низкого уровня, снимаемые с выхода инвертора DD1.1, через дифференцирующую цепь C1R1VD1 поступают на вход таймера DA1, включенного по схеме одновибратора. Выходные прямоугольные импульсы одновибратора имеют постоянные длительность и амплитуду, а частота пропорциональна частоте вращения коленчатого вала двигателя.
С делителя напряжения R3 эти импульсы поступают на интегрирующую цепь R4C4, преобразующую их в постоянное напряжение, которое прямо пропорционально частоте вращения коленчатого вала. Это напряжение заряжает времязадающий конденсатор С2 октанкорректора.
Таким образом, при увеличении частоты вращения коленчатого вала пропорционально сокращается время зарядки времязадающего конденсатора до напряжения переключения логического элемента DD1.4 и, соответственно, уменьшается время задержки, вносимой электронным октан-корректором. Требуемая зависимость изменения зарядного напряжения от частоты обеспечивается установкой начального напряжения на конденсаторе С4, снимаемого с движка резистора R3, а также регулировкой длительности выходных импульсов одновибратора резистором R2.
Кроме этого, в октан-корректоре [2] сопротивление резистора R4 необходимо увеличить с 6,8 до 22 кОм, а емкость конденсатора С2 уменьшить с 0,05 до 0,033 мкФ. Левый по схеме вывод резистора R6 (Х1) отключают от плюсового провода и подключают к общей точке конденсатора С4 и резистора R4 добавляемого узла. Напряжение питания на октан-корректор подают с параметрического стабилизатора R5VD2 добавочного узла.
Октан-корректор с указанными доработками обеспечивает регулировку задержки момента зажигания, эквивалентную изменению УОЗ в пределах 0…-10 град. относительно значения, установленного механическим октанкорректором. Характеристика работы устройства при тех же начальных условиях, что и в приведенном выше примере, представлена на рис. 1 кривой 3.
При максимальном времени задержки момента зажигания погрешность поддержания УОЗ в интервале частоты вращения коленчатого вала 1200…3000 мин -1 практически отсутствует, при 900 мин -1 не превышает 0,5 град., а в режиме холостого хода — не более 1,5…2 град. Задержка не зависит от изменения напряжения бортовой сети автомобиля в пределах 9…15 В.
Доработанный октан-корректор сохраняет способность обеспечивать искрообразование при снижении питающего напряжения до 6 В. Если требуется расширить диапазон регулирования УОЗ, рекомендуется увеличить сопротивление переменного резистора R6.
Предлагаемое устройство отличает от подобных, описанных в [3; 4], схемная простота, надежность работы, а также возможность сопряжения практически с любой системой зажигания.
В добавочном узле использованы постоянные резисторы МЛТ, подстроечные резисторы R2, R3 — CП5-2, конденсаторы С1-C3 — КМ-5, КМ-6, С4 — К52-1Б. Стабилитрон VD2 необходимо подобрать с напряжением стабилизации 7,5…7,7 В.
Детали узла размещены на печатной плате из фольгированного стеклотекстолита толщиной 1…1,5 мм. Чертеж платы показан на рис. 3.
Плата узла прикреплена к плате октан-корректора. Все устройство в сборе лучше всего смонтировать в отдельном прочном кожухе, укрепляемом вблизи блока зажигания. Необходимо позаботиться о защите октан-корректора от влаги и пыли. Его можно выполнить в виде легкосъемного блока, устанавливаемого в салоне автомобиля, например, на боковой стенке внизу, слева от места водителя. В этом случае, при снятом октан-корректоре, электрическая цепь зажигания окажется разомкнутой, что, по крайней мере, сильно затруднит запуск двигателя посторонним лицом. Таким образом, октан-корректор дополнительно будет выполнять функцию противоугонного устройства. С этой же целью целесообразно применить регулировочный переменный резистор СП3-30 (R6) с выключателем, размыкающим электрическую цепь этого резистора.
Для налаживания устройства потребуется источник питания напряжением 12…15 В, любой низкочастотный осциллограф, вольтметр и генератор импульсов, который можно выполнить так, как указано в [1]. Сначала временно отключают входную цепь таймера DA1, а движок резистора R3 устанавливают в нижнее (по схеме) положение.
На вход октан-корректора подают импульсы частотой 40 Гц и, подключив осциллограф к его выходу, резистором R3 постепенно увеличивают напряжение на конденсаторе С4 до появления выходных импульсов. Затем восстанавливают входную цепь таймера, подключают осциллограф к его выводу 3 и резистором R2 устанавливают длительность выходных импульсов одновибратора равной 7,5…8 мс.
Снова подключают осциллограф, переведенный в режим внешней синхронизации со ждущей разверткой, запускаемой входными импульсами (лучше всего использовать простейший двуканальный коммутатор), к выходу октанкорректора и резистором R6 устанавливают время задержки выходного импульса 1 мс. Увеличивают частоту генератора до 80 Гц и резистором R2 устанавливают время задержки 0,5 мс.
Проверив после этого длительность задержки импульсов на частоте 40 Гц, регулировку при необходимости повторяют до тех пор, пока длительность на частоте 80 Гц не будет точно в два раза меньше, чем на частоте 40 Гц. При этом следует иметь в виду, что для обеспечения стабильной работы одновибратора до частоты срабатывания узла выключения задержки момента зажигания (100 Гц) длительность его выходных импульсов не должна превышать 9,5 мс. Фактически в налаженном устройстве она не превышает 8 мс.
Затем частоту генератора уменьшают до 20 Гц и измеряют получаемую при этой частоте задержку входного импульса. Если она не менее 1,6…1,7 мс, то налаживание заканчивают, регулировочные винты подстроечных резисторов фиксируют краской, а плату, со стороны печатных проводников, покрывают нитролаком. В противном случае резистором R3 немного уменьшают начальное напряжение на конденсаторе С4, увеличивая время задержки до указанной величины, после чего проверяют и, если необходимо, снова выполняют регулировку на частоте 40 и 80 Гц.
Не следует стремиться к строгой линейности частотной зависимости времени задержки на участке ниже 40…30 Гц, поскольку это требует значительного уменьшения начального напряжения на конденсаторе С4, что может привести к пропаданию импульсов зажигания на самых малых оборотах коленчатого вала или неустойчивой работе системы зажигания при запуске двигателя.
Небольшая остаточная погрешность, выраженная в некотором уменьшении времени задержки зажигания на начальном участке (см. кривую 3 на рис.1), оказывает скорее положительное, нежели отрицательное воздействие, поскольку (автолюбители это хорошо знают) на малых оборотах двигатель работает устойчивее при несколько более раннем зажигании.
Наладить устройство с вполне приемлемой точностью можно и без осциллографа. Делают это так. Сначала проверяют работоспособность добавочного узла. Для этого движки резисторов R2 и R3 устанавливают в среднее положение, к конденсатору С4 подключают вольтметр, включают питание устройства и подают на вход октан-корректора импульсы частотой 20…80 Гц. Вращая движок резистора R2, убеждаются в изменении показаний вольтметра.
Затем возвращают движок резистора R2 в среднее положение, а резистор R6 октан-корректора переводят в положение максимального сопротивления. Отключают генератор импульсов, и резистором R3 устанавливают на конденсаторе С4 напряжение 3,7 В. Подают на вход октан-корректора импульсы частотой 80 Гц и резистором R2 устанавливают на этом конденсаторе напряжение 5,7 В.
В заключение снимают показания вольтметра на трех значениях частоты — 0, 20 и 40 Гц. Они должны быть соответственно 3,7, 4,2 и 4,7 В. При необходимости регулировку повторяют.
Подключение доработанного октанкорректора к бортовой системе автомобилей различных марок никаких особенностей по сравнению с описанным в [2, 5, 6] не имеет.
После монтажа октан-корректора на автомобиль, запуска и прогревания двигателя движок резистора R6 перемещают в среднее положение и механическим октан-корректором устанавливают оптимальный УОЗ, как это указано в инструкции по эксплуатации автомобиля, т. е. добиваются незначительной, кратковременной детонации двигателя при резком нажатии на педаль акселератора во время движения машины на прямой передаче со скоростью 30…40 км/ч. На этом все регулировки заканчивают.
Трехлетняя эксплуатация доработанного автором октан-корректора на автомобиле ГАЗ-2410, укомплектованном блоком зажигания 1302.3734-01 с магнитоэлектрическим датчиком, показала заметное улучшение ходовых качеств машины .
Автор: К.Куприянов, г.Санкт-Петербург
Вообще говоря, изменение установленного угла опережения зажигания нужно рассматривать как меру временную и вынужденную, в частности, при необходимости использовать бензин с октановым числом, не соответствующим паспортным характеристикам двигателя автомобиля. В настоящее время, когда качество горючего, которое мы заливаем в бак своей машины, стало, мягко говоря, непредсказуемым, такой прибор, как электронный октан-корректор, просто необходим.
Как совершенно справедливо замечено в статье К. Куприянова, при введении в действие октан-корректора, описанного в [1]. происходит постоянное по времени запаздывание момента зажигания, пропорциональное в угловом исчислении увеличению частоты вращения коленчатого вала двигателя с последующим скачкообразным увеличением угла ОЗ. Хотя на практике это явление почти незаметно, внутренние резервы исходного устройства позволяют частично устранить упомянутое запаздывание. Для этого в устройство [2] достаточно ввести транзистор VT3, резисторы R8. R9 и конденсатор С6 (см схему на рис. 1).
(нажмите для увеличения)
Алгоритм работы октан-корректора качественно проиллюстрирован графиками, показанными на рис. 2. Моментам размыкания контактов прерывателя соответствуют плюсовые перепады напряжения — от низкого уровня к высокому — на входе октан-корректора (диагр. 1). В эти моменты происходит быстрая разрядка конденсатора С1 почти до нуля через открывающийся транзистор VT1 (диагр. 3). Заряжается конденсатор сравнительно медленно через резистор R3.
Как только напряжение на заряжающемся конденсаторе С1 достигнет порога переключения логического элемента DD1.2. он переходит из единичного состояния в нулевое (диагр. 4), a DD1.3 — в единичное. Открывающийся в этот момент транзистор VT2 быстро разряжает конденсатор С2 (диагр. 5) до уровня, практически определяемого напряжением на базе транзистора VT3. Поскольку задержка переключения элемента DD1.2 не зависит от частоты вращении, среднее напряжение на его выходе увеличивается с увеличением частоты. Конденсатор С6 усредняет это напряжение.
Последующая зарядка конденсатора С2 через резистор R6 начинается именно с указанного уровня в момент закрывания транзистора VT2. Чем ниже начальный уровень, тем дольше будет заряжаться конденсатор до момента переключения элемента DD1.4, а значит, больше задержка искрообразования (диагр. 6).
Получаемая при этом характеристика угла OЗ показана на рис. 3, аналогичном рис. 1 в статье К. Куприянова, в виде кривой 4. При тех же начальных условиях (tзад = 1 мс при N = 1500 мин-1) погрешность регулирования в наиболее часто употребляемом при езде интервале частоты вращения коленчатого вала двигателя от 1200 до 3000 мин-1 не превышает 3 град.
Следует отметить, что работа этого варианта октан-корректора существенно зависит от скважности входных импульсов. Поэтому для его налаживания рекомендуется собрать формирователь импульсов по схеме на рис. 4. Как известно, импульсы с датчика Холла автомобиля ВАЗ-2108 и его модификаций имеют скважность, равную 3, а угол замкнутого состояния контактов φзс контактного прерывателя вазовских автомобилей равен 55 град., т. е. скважность импульсов с прерывателя «шестерки» Q = 90/55= 1,63.
Чтобы можно было применять один и тот же формирователь импульсов для налаживания октан-корректоров разных моделей автомобилей с небольшой лишь корректировкой скважности, для контактной системы зажигания пересчитывают скважность с учетом инвертирования: Qинв = 90/(90 — φзс). или для ВАЗ-2106 Qинв = 90/(90 — 55)=2.57. Подбирая число диодов формирователя и синусоидальное напряжение генератора сигналов, получают необходимую скважность импульсов на входе октан-корректора. В моем практическом варианте для получения скважности 3 понадобилось четыре диода при амплитуде сигнала генератора 5.7 В.
Кроме указанных, для формирователя подойдут диоды серий Д220. Д223, КД521, КД522 и транзистор КТ315 с любым буквенным индексом. Можно применить формирователь импульсов заданной скважности и по другой схеме.
Корректор для автомобиля ВАЗ-2108 (вставлена перемычка Х2.3 на рис. 1) налаживают следующим образом. Вместо делителя R8R9 временно подключают любой переменный резистор группы А сопротивлением 22 кОм (движком к базе транзистора VT3). Сначала движок резистора устанавливают в то крайнее положение, в котором база транзистора «заземлена». К входу корректора подключают формирователь, а к выходу — осциллограф.
Включают питание корректора и устанавливают частоту генератора 120 Гц со скважностью выходных импульсов формирователя, равную 3. Подбирают резистор R3, добиваясь отключения задержки на этой частоте. Затем уменьшают частоту генератора до 50 Гц и, перемещая движок резистора R6 поочередно в оба крайних положения, определяют максимальное время задержки момента зажигания, вносимое октан-корректором (в нашем случае 1 мс). Увеличивают частоту генератора до 100 Гц и находят такое положение движка временного переменного резистора, в котором максимальная задержка момента зажигания, устанавливаемая резистором R6. равна половине максимальной — 0.5 мс.
Теперь целесообразно снять график зависимости времени задержки момента зажигания от частоты генератора при найденном положении движка временного переменного резистора Пересчитывают частоту вращения вала двигателя в мин-1: N = 30f. где f — частота генератора. Гц. Угол ОЗ φоз = 6N·t, где t — время задержки, мс. Результирующий угол φрез оз = 15 — φоз (см. таблицу) наносят на график рис. 3.
По форме полученный график не должен сильно отличаться от кривой 4, хотя числовые значения могут быть и другими в зависимости от максимального времени задержки. Если необходимо, повторно выполняют операцию регулировки.
По завершении налаживания отключают временный переменный резистор и, измерив сопротивление его плеч, впаивают постоянные резисторы с номиналами, ближайшими к измеренным. Необходимо отметить, что характеристику регулирования можно существенно изменять, варьируя номиналы резистора R3 (частоту отключения задержки), делителя R8R9 и конденсатора С6. Начальные условия описанной регулировки выбраны для сравнения с вариантом, выбранным К. Куприяновым: N = 1500 мин-1, t = 1 мс, φмок = +15 град. (φмок — угол, установленный механическим октан-корректором).
Для использования на автомобиле ВАЗ-2106 октан-корректор налаживают аналогично (с перемычкой Х2.3), но импульсы от формирователя должны иметь скважность 2.57. Перед установкой корректора на автомобиль перемычку Х2.3 меняют на Х2.2.
Для доработки октан-корректора [2] его плату извлекают из коммутатора 3620.3734 и навесным монтажом припаивают транзистор VT3 и конденсатор С6 с таким расчетом, чтобы плату можно было установить на старое место. Подобранные резисторы R8 и R9 припаивают на плату. Транзистор V13 и конденсатор С6 следует фиксировать клеем «Момент» или ему подобным.
Вместо КТ3102Б подойдет любой транзистор этой серии. Конденсатор С6 — К53-4 или любой танталовый либо оксиднополупроводниковый, подходящий по размерам и номиналу.
Автор: Э.Адигамов, г.Ташкент, Узбекистан
Назначение автоматического октан-корректора «СилычЪ»
На рис. — текущее исполнение АОК, он залит герметиком и помещен в термоусадку.
Автоматический октан-корректор «СилычЪ» (АОК) был создан для автомобилей, оснащенных распределителем зажигания со встроенными механическими формирователями УОЗ (трамблер с датчиком Холла) с целью оптимизации работы двигателя при минимальных затратах. Алгоритм работы автоматического октан-корректора «СилычЪ» соответствует принципу управления УОЗ в инжекторных двигателях по сигналам с датчика детонации.
Серийный двигатель невозможно спроектировать так, чтобы он выдавал максимально возможные параметры на всех режимах. Каждый экземпляр хоть немного, но отличается от соседнего. А, когда зажиганием управляет механический трамблер — эти различия только увеличиваются. Вот этот образовавшийся запас (он виден на диаграмме между линией штатного трамблера и линией результата от «Силыча») и использует АОК «СилычЪ», оперативно регулируя УОЗ.
Установка электронного октан-корректора.
После ремонта трамблера , эксперименты с зажиганием продолжаются. В закромах гаража нашел электронный октан-корректор «ЭКО». Для тех кто не в курсе — это прибор для изменения УОЗ ручкой из салона машины. Например, заправились мы плохим бензином (а такое случается довольно часто, особенно в дальней дороге, на заправках на трассе), время сгорания некачественного топлива (как правило с низким октановым числом) изменилось и при прежнем угле опережения зажигания скорее всего будет детонация (взрывное сгорание смеси), которая весьма уменьшает ресурс двигателя. Поэтому, было бы целесообразно изменить УОЗ для данного топлива. Без октан-корректора мы полезли бы под капот, открутили бы гайку трамблера и вертели бы его, чтобы сделать зажигание позднее. Неудобно согласитесь. Гораздо удобнее, услышав детонацию, повернуть ручку в салоне и продолжать езду без остановок и потери времени. В настоящее время популярны автоматические октан-корректоры (АОК), в которых предусмотрен датчик детонации и после установки АОК можно забыть о качестве бензина. Один их минус — высокая цена.
Датчик детонации
Автоматический октан-корректор «СилычЪ» построен на базе высоконадежной однокристальной микро-ЭВМ и использует широкополосный датчик детонации GT305 или 18.3855, выпускаемые в России. Постоянный анализ сигналов, поступающих со штатных датчиков и датчика детонации, обеспечивает точную коррекцию УОЗ для работы карбюраторного двигателя на границе возникновения детонации. В процессе эксплуатации устройство не требует технического обслуживания. Данный датчик детонации есть в продаже в любом автомагазине.
Автоматический октан-корректор «СилычЪ» позволяет:
- повысить КПД и мощность карбюраторного двигателя;
- облегчить запуск карбюраторного двигателя (особенно в холодное время года);
- снизить расход топлива карбюраторного двигателя на 3 — 5 %;
- повысить тяговый момент на низких оборотах;
- увеличить срок службы двигателя;
- уменьшить шумность работы двигателя;
- компенсировать разброс качества топлива на 5 — 7 октановых единиц;
- в аварийной ситуации, кратковременно использовать низкооктановое топливо (вопреки рекомендациям завода изготовителя),
- при использовании газового топлива на карбюраторном двигателе учитывать особенности его горения для формирования оптимальной зависимости УОЗ от частоты вращения коленвала.
Октан корректор для бесконтактного зажигания своими руками
В настоящее время многие автолюбители проявляют повышенный интерес к устройствам электронного регулирования угла опережения зажигания (УОЗ) или октан-корректорам (ОК), которые позволяют на 5-10% экономить топливо и адаптировать двигатель к топливу различного качества, повышают максимальную мощность и снижают токсичность выхлопа.
Существующие схемные решения имеют некоторые недостатки:
- задержка УОЗ производится на фиксированный период времени, что при разных оборотах вала двигателя соответствует разному УОЗ [1, 2];
- при построении схем задержки фиксированного УОЗ значительно возрастает их сложность [3, 4, 5].
С учетом вышесказанного авторы разработали простой и эффективный ОК, в котором при любых оборотах вала двигателя УОЗ остается постоянным. Структурная схема ОК показана на рис.1. Принцип его роботы основан на пропорциональности задержки УОЗ от периода вращения вала. Последовательность импульсов, в которой в некоторых пределах необходимо задержать положительный фронт, формируется прерывателем и поступает на вход схемы. При этом длительность паузы используется как опорная величина, которая фиксируется генератором опорной частоты G1 и реверсивным счетчиком СТ, работающим в режиме стека, т.е. при низком уровне на входе ±1 он работает на увеличение счета (накапливание информации), а при наличии на том же входе высокого уровня он работает на уменьшение (считывание накопленной информации).
В первом случае работает генератор G1, а во втором – генератор G2, а G1 блокируется, частоту которого можно изменять. При равенстве частот G1 и G2 задержка УОЗ составит 90 град., поэтому для обеспечения задержки до 30 град. необходимо, чтобы частота G2 было в 3 и более раза выше частоты G1. По окончании счета, когда счетчик отдал всю накопленную информацию, на его выходе Р формируется сигнал, который устанавливает на выходе RS-триггера высокий уровень, блокирует работу счетчика и является задержанным выходным сигналом. В исходное состояние схема возвращается при приходе на ее вход низкого уровня, который сбрасывает RS-триггер, и цикл повторяется.
Принципиальная схема OK и диаграммы ее работы показаны на рис.2 и рис.3 соответственно. На входе схемы установлен фильтр низкой частоты R3-C3, который совместно с ячейками DD1.1, DD1.4, содержащими на входе триггеры Шмитта, исключает влияние дребезга контактов прерывателя на работу схемы. Генератор G1 собран на DD1.3, DD1.2, R7, С2 и для исключения переполнения счетчиков DD2, DD3 при низких оборотах вала двигателя настроен на частоту 1 кГц. Генератор G2 собран на DD1.1, DD1.2, R4, R5, С1. Переменным резистором R4 можно изменять его частоту от 3 до 90 кГц, что обеспечивает регулировку У03 от 30 до 1 град. соответственно. Счетчики DD2, DD3 включены каскодно, что позволяет увеличить их общую емкость до 256 бит. Счетчики сначала накапливают информацию о длительности замкнутого состояния контактов прерывателя, а после их размыкания считывают ее. При полном считывании накопленной информации на выводе 7 счетчика DD3 появляется кратковременный отрицательный импульс, который через ячейку D04.3 переключает RS-триггер, собранный на ячейках DD4.2 н DD4.4, с инверсного выхода которого формируется сигнал блокировки счетчика DD2 и через DD4.1, R6, VT -выходной задержанный сигнал.
Детали. Микросхему К561ТЛ1 можно заменить на К561ЛА7, но при этом после фильтра НЧ необходимо установить триггер Шмитта, собранный по любой известной схеме. Стабилитрон VD любой на напряжение 5-9 В. Транзистор КТ972 можно заменить парой КТ3102, КТ815 (КТ817).
Конденсаторы С1 и С2 необходимо выбрать однотипными или с одинаковым ТКЕ, как можно ближе к нулевому значению. То же касается и резисторов R5, R7. Параллельно каждой микросхеме, по шинам питания желательно установить керамический конденсатор емкостью 0,1 мкФ, а параллельно VD – танталовый электролитический конденсатор.
Настройка. Для настройки генераторов необходимо установить щуп частотомера на вывод 4 микросхемы DD1.2, после этого на вход схемы подать низкий логический уровень и подобрать резистор R7 так, чтобы частота генератора составила 1 кГц. Далее установить ползунок резистора R4 в нижнее по схеме положение, подать на вход высокий логический уровень и подобрать резистор R5 ток, чтобы показания частотомера равнялись 90 кГц, что будет соответствовать задержке У03 в 1 град.
В верхнем положении ползунка R5 частота генератора должна быть около 3 кГц, что соответствует задержке У03 в 30 град. При желании эту величину можно изменять в большую или меньшую сторону, меняя номинал R4, который устанавливается на панели управления. Провода желательно экранировать.
Автор: В. Петик, В. Чемерис, г.Энергодар, Запорожская обл.
1. Ковальский А., Фропол А. Приставка октан-корректор //Радио.-1989.-№6.-С.31.
2. Сидорчук В. Электронный октан-корректор // Радио. -1991.-№11.-C.25.
3. Беспалое В. Корректор угла ОЗ // Радио.- 1988.-№5.-с.17.
4. Архипов Ю. Цифровой регулятор угла опережения зажигания // Радиоежегодник.-1991.-С.129.
5. Романчук А. Октан-корректор на КМОП микросхемах // Радиоежегодник.-1994. -И5.-С.25.
ОПЕРЕЖЕНИЕ С ОПОЗДАНИЕМ
ОПЕРЕЖЕНИЕ С ОПОЗДАНИЕМ
Кому не знакомо: отъехал от колонки, надавил на педальку, а из-под капота — дзынь, дзынь.
Технические характеристики:
- Напряжение питания от 8 В до 18 В (возможны кратковременные до 0,1 сек скачки напряжения питания до 40 В).
- Диапазон рабочих температур от -40 °С до +85 °C и относительной влажности до 90 % при температуре +40 °С.
- Максимальный потребляемый ток 30мА.
- Допустимая частота вращения коленчатого вала от 200 об/мин до 7000 об/мин.
- Диапазон корректировки УОЗ от 0° до 11°.
- трамблер должен быть с датчиком Холла.
- Корректировка УОЗ в сторону уменьшения при пуске ДВС 8°.
- Дискретность корректировки УОЗ, за такт зажигания: в сторону уменьшения (при детонации) 1° — 2°
- в сторону увеличения 0,2° — 0,3°
Датчик детонации устанавливается на шпильку головки блока цилиндров (ГБЦ) через переходник. Ниже приведены чертежи переходников для трех различных типов двигателей:
Источник статьи: http://7road.ru/drugoe/oktan-korrektor-otzyvy.html