Определение остаточного ресурса двигателя автомобиля

Прогнозирование остаточного ресурса автомобиля по результатам диагностирования.

В процессе эксплуатации автомобилей техническое состояние их элементов зависит от эксплуатационных, конструктивных и технологических факторов и практически не поддается предварительному учету. Предсказать техническое состояние машины в будущем можно прогнозированием. На основе прогнозирования дается заключение о целесообразности проведения технического воздействия (ремонта, замены, регулировки). Прогнозирование при известных нормативных значениях диагностических параметров решает задачи определения остаточного ресурса и периодичности диагностирования. Остаточный ресурс — наработка до перехода в предельное состояние после диагностирования. Изменение параметра в заданный промежуток наработки называется реализацией параметра.

Сравнивая измеренное значение диагностического параметра с нормативным (предельным или допускаемым) его значением, делается заключение об остаточном ресурсе и соответственно о необходимости проведения тех или иных технических воздействий. Когда остаточный ресурс больше предстоящего межконтрольного цикла, то техническое воздействие на диагностируемый элемент не осуществляется. Если остаточный ресурс меньше межконтрольного цикла и диагностический параметр достиг своего допускаемого значения, то осуществляется техническое воздействие.

При прогнозировании остаточного ресурса элементов автомобилей применяют методы прогнозирования по среднему статистическом изменению параметра и по реализации. Прогнозирование по среднему статистическому – это предсказание изменения параметра по данным среднестатистического его изменения для совокупности одноименных элементов. Прогнозирование по реализации — предсказание изменения параметра конкретного элемента как по данным изменения параметра этого элемента в прошлом, так и по данным среднестатистического изменения параметра совокупности элементов. Прогнозирование остаточного ресурса по среднему статистическому изменению его параметра. Метод прогнозирования остаточного ресурса машины или отдельного его элемента применяется при отсутствии информации об изменении параметра в прошлом.

Читайте также:  Чем отличается осмотр от досмотр автомобиля

При реализации этого метода используется функция среднего изменения диагностического параметра, ее среднеквадратичное отклонение и средние данные по предельному состоянию, полученные для группы однотипных элементов. Для расчета среднеквадратичного отклонения S измеряемого диагностического параметра сначала выявляется закономерность распределения отклонений его частных значений по конкретным интервалам наработки (км пробега, времени и др.). Метод имеет большую погрешность в оценке остаточного ресурса отдельных элементов. Прогнозирование остаточного ресурса по реализации. Метод заключается в предсказании изменения диагностического параметра с учетом его предельного значения и индивидуального изменения в прошлом, а также характера изменения, выявленного для всей совокупности однотипных элементов. При прогнозировании по этому методу принимается, что изменение параметра диагностируемого элемента характеризуется экстраполяциопной функцией и среднеквадратичным отклонением этой функции от фактического изменения параметра. Этот метод позволяет получать более достоверный прогноз остаточного ресурса, чем метод прогнозирования по среднему статистическому изменению параметра.

Дата добавления: 2016-12-08 ; просмотров: 3136 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник статьи: http://helpiks.org/8-82076.html

Всероссийская Олимпиада профессионального мастерства

Прогнозирование остаточного ресурса двигателя

Задача «Прогнозирование (определение) остаточного ресурса двигателя ЗМЗ-4063.10» включена в вариативную часть задания II уровня Всероссийской Олимпиады профессионального мастерства для специальности 23.02.03 «Техническое обслуживание и ремонт автомобильного транспорта».

Задание заключается в определении остаточного ресурса двигателя аналитическим или графическим методом по какому-либо диагностическому параметру, в частности — по компрессии в цилиндрах (т. е. давлении в конце такта сжатия).
Ниже приведен пример решения подобной задачи.

Пример решения задачи
«Прогнозирование (определение) остаточного ресурса двигателя ЗМЗ-4063.10.»

Задача:
Определить остаточный ресурс двигателя (в км пробега) по диагностическому параметру — давление в конце такта сжатия по исходным данным, представленным ниже.
Решение задачи проинтерпретировать графически в выбранном масштабе.

Примечание: исходные для примера данные выбраны произвольно.

1. Пробег автомобиля – L = 165 000 км;

2. Диагностический параметр — давление в конце такта сжатия ( Р ):

  • номинальное значение – Рном = 12 кгс/см 2 ;
  • предельное значение – Рпр = 9,6 кгс/см 2 ;
  • измеренное значение – Ризм = 10,8 кгс/см 2 .

3. Показатель степени изменения диагностического параметра α = 1,3.

Данную задачу можно решать аналитическим и графическим методом. Рассмотрим каждый из них по отдельности.

Решение аналитическим методом:

Для определения остаточного ресурса двигателя Lост используем зависимость:

Ответ: Прогнозируемый остаточный ресурс ЦПГ двигателя по давлению в конце такта сжатия до достижения предельного состояния будет равен 123 тыс. км.

При решении данного типа уравнений наибольшее затруднение вызывает возведение числа в дробную степень. Для того, чтобы выполнить это действие, следует провести следующие преобразования:
— если дробный показатель степени указан в виде сложной или десятичной дроби, ее следует преобразовать в простую дробь вида «a/b», где «a» и «b» — целые числа;
— число, возводимое в дробную степень необходимо возвести в степень «a» (числитель полученной простой дроби), и извлечь корень степени «b» (знаменатель полученной простой дроби).
Пример:
Предположим необходимо возвести число 2 в степень 1/1,3.
Проводим преобразования: 1/1,3 ≈ 0,77 = 77/100.
Тогда: 2 1/1,3 = 2 0,77 = 2 77/100 = 100 2 77 = 1,70527 (здесь √ — знак корня).
Конечно же, без хорошего калькулятора, способного извлекать корни n-й степени, здесь не обойтись.

Графическая интерпретация и решение графическим методом:

Для графической интерпретации аналитического решения строим график зависимости диагностического параметра от пробега, выбрав соответствующий масштаб (чем крупнее масштаб, тем точнее будет результат при решении задачи графическим методом). По оси абсцисс (х) откладываем пробег автомобиля L (в тыс. км), по оси ординат (у) – значение диагностического параметра Р в кг/см 2 .
Соединив полученные точки плавной кривой, получим график изменения диагностического параметра.

В случае, если коэффициент α будет задан равным единице, график получится в виде прямой наклонной линии (линейная зависимость), в остальных случаях ( α ≠ 1) график получится в виде кривой линии.
Если α > 1, график будет иметь вид кривой, обращеной выпуклостью вниз (вогнутая), если α α не может быть равен нулю, поскольку тогда мы получим вечный (неизнашиваемый) двигатель.
Если параметр с пробегом растет (например, износ ЦПГ), то график пойдет на подъем, если параметр с пробегом уменьшается (например, компрессия двигателя), график пойдет на спад (как на рис. 1).

На полученном графике необходимо указать участок, интерпретирующий остаточный ресурс двигателя ( Lост ) и определить его длину (с учетом масштаба) при решении графическим методом.
В случае, если задача решается только графическим методом, кроме ресурса (пробега) в момент измерения (диагностирования), должен быть задан предельный ресурс двигателя по пробегу.

Пример построения графика приведен ниже.

Примечание: Задача может быть поставлена по-другому, например:
Требуется определить, какой ресурс имеет новый двигатель до предельного состояния?

В этом случае для прогнозирования ресурса (пробега) двигателя до предельного состояния может быть использована формула:

Lпр = α √[( Рпр – Рном ) /Vс ], (прим.:— знак корня)

где Vс — скорость изменения параметра, которая определяется экспериментально-статистическими методами (в предлагаемой задаче должна быть в исходных данных).

Лекционные материалы

Прогнозирование остаточного ресурса двигателя

Прогнозирование применяется для определения остаточного ресурса машин и механизмов (в т. ч. двигателей), с целью определения надежности и безотказности их работы при дальнейшей эксплуатации. Прогнозирование надежности может производиться по разнообразным критериям (например, по динамике процесса изнашивания деталей ЦПГ, по содержанию элементов износа в масле смазочной системы, показателям давления сжатой смеси в цилиндрах и т. д.).

В общем случае критерий (показатель), выбранный для определения остаточного ресурса двигателя, должен наиболее полно характеризовать динамику снижения его надежности (безотказности) при эксплуатации.
С целью получения более достоверного прогноза нередко используют несколько ключевых критериев, характеризующих надежность машины (двигателя) или ее составного элемента.

Для прогнозирования остаточного ресурса механизмов и машин используют разнообразные методы – метод экспертных оценок, методы моделирования и статистические методы. Все эти прогнозы основываются на вероятностных категориях, т. е. в определенной степени подчиняются факторам случая.
Тем не менее, в обобщенном виде, современные методы прогнозирования позволяют оценить остаточный ресурс любой машины с целью определения ее эксплуатационных возможностей в достаточно достоверной степени.

В настоящее время наибольшее применение находят методы статистического моделирования (прогнозирования), основанные на анализе результатов технической диагностики. Как упоминалось выше, результаты такого прогноза (как, впрочем, и при использовании других методов) следует рассматривать как вероятностную категорию, не застрахованную от случайных возмущений и не гарантирующую стопроцентного результата.

Сущность метода статистического моделирования заключается в измерении реальных значений критерия работоспособности и сопоставлении результатов измерения с допустимыми или предельными значениями для этого критерия. При этом допустимые значения параметров технического состояния являются инструктивными и позволяют делать общее заключение о состоянии объекта диагностирования, не проводя никаких расчетов.
Так, если измеренное значение параметра больше допустимого или равно предельному значению, то объект подлежит обслуживанию или ремонту не зависимо от его текущей работоспособности. Если же измеренное значение меньше допустимого или равно ему, то объект не требует никаких воздействий до очередной проверки.

В качестве примера можно привести оценку состояния двигателя по такому параметру, как давление в цилиндрах в конце такта сжатия (компрессия). Снижение давления свидетельствует, в первую очередь (при исправном ГРМ), об износе деталей ЦПГ – поршней, гильз и поршневых колец.
Предположим, что предельно допустимое давление, при котором двигатель может работать с соблюдением экономических и динамических показателей, не должно быть менее 10 кг/см 2 . Номинальное давление (не изношенные детали) составляет 12 кг/см 2 .

Параметр измеряется мастером-диагностом во время прохождения автомобилем технического обслуживания №2 (ТО2) с интервалом (после наработки) 10 тыс. км. Данные измерений фиксируются в карточке учета с указанием наработки (пробега) и значения параметра.

После определенного периода эксплуатации и прохождения нескольких диагностических замеров можно составить график изменения параметра (давления в цилиндрах), откладывая по оси абсцисс наработку (пробег), а по оси ординат – значение параметра (давления в цилиндрах).
Полученный график (рис. 1) может иметь форму прямой или кривой линии в зависимости от характера и интенсивности изменения параметра.

Прямая линия графика (рис. 1, а) указывает, что относительное изменение параметра происходит линейно, т. е. прямо пропорционально наработке. Линейная зависимость изменения параметра от наработки встречается редко, чаще график имеет вид плавной кривой, направленной выпуклостью вверх или вниз.

Рассмотрим в качестве примера динамику износа деталей ЦПГ двигателя в зависимости от наработки (пробега автомобиля). Кривая графика при правильной эксплуатации двигателя будет иметь плавный изгиб. При этом если кривая направлена выпуклостью вниз (рис. 1, б), можно сделать вывод, что параметр с наработкой возрастает все интенсивнее (например, пробег увеличился в два раза, а износ деталей – в 5 раз). Если выпуклость линии графика направлена вверх (рис. 1, в), значит, с наработкой относительное изменение параметра уменьшается. Это, например, может иметь место, когда сопряженные детали ЦПГ притерлись после обкатки и интенсивность их износа с наработкой снижается в сравнении с начальным периодом эксплуатации.

Следует отметить, что график изменения параметра может быть не только нарастающим, но и убывающим, как, например, в случае с компрессией в цилиндрах (см. рассмотренную выше задачу).

Исходными данными при использовании методов статистического прогнозирования ресурса двигателя являются:

  • характер изменения контролируемого параметра технического состояния;
  • предельное Ппр , допустимое Пд и номинальное Пном его значения;
  • значение параметра технического состояния на момент диагностирования П(tд) ;
  • наработка tм двигателя от начала эксплуатации до момента диагностирования;
  • периодичность проведения диагностирования tд ;
  • предельное изменение параметра технического состояния Uпр , изменение параметра технического состояния U(tм) после наработки tм ,
  • tост — остаточный моторесурс (определяемая величина).

Прогнозирование ресурса может осуществляться на основе полученных в результате измерения данных и непосредственного построения графической зависимости значений параметра от наработки. Т. е. мастер-диагност периодически выполняет замер параметра после определенной наработки (например, во время ТО), а затем по данным диагностических замеров выполняется и анализируется графическая зависимость.

Возможен и аналитический способ статистического прогнозирования, при котором используются данные измерений параметра в процессе наработки, после чего определяется скорость (интенсивность) изменения данного параметра.
Аналитический способ позволяет прогнозировать значение параметра после любой наработки, используя эмпирическую зависимость:

Где: U(tм) — характер изменения параметра технического состояния после наработки tм ;
Vс — коэффициент, характеризующий скорость изменения параметра (интенсивность износа сопрягаемых элементов, загрязнения масла, снижения давления в цилиндрах и т. п.);
α — показатель степени изменения параметра технического состояния.

Показатель степени α определяется на основе статистических данных о закономерностях изменения параметров технического состояния в зависимости от наработки, полученных в реальных условиях эксплуатации, т. е. опытным путем.
При α > 1 и α α > 1) кривая обращена выпуклостью вниз (рис. 1, б), во втором ( α α = 1 указанная зависимость имеет линейный вид (рис. 1, а).

Экспериментально были получены ориентировочные значения α для некоторых параметров технического состояния двигателя.

Таблица 1. Нормативные значения параметров диагностирования технического состояния ЦПГ и показателя α для этих параметров.

Источник статьи: http://k-a-t.ru/olimpus/olimpus_3/index.shtml

Оцените статью