Бесконтактные лазерные и оптические датчики скорости и пути
Бесконтактный принцип измерения скорости достаточно прост. «Простейший» прибор – глаз. Каждый, глянув в окно вагона или автомобиля, может оценить скорость движения по пробегающему мимо пейзажу. «Обработка» сигнала при этом происходит в мозгу – оценка расстояния до какого-либо объекта, его угловая скорость, плюс жизненный опыт. То же, с гораздо более высокой точностью, можно измерить на приборном уровне.
Рассмотрим сначала лазерный датчик, как наиболее простой. Итак, есть движущийся объект, осветитель этого объекта (иначе ничего не увидим) и регистрирующая отраженный сигнал оптическая система. Это может быть просто линза и фотодетектор (ФД).
Объект неоднороден по яркости и шероховатости, поэтому при движении, ФД будет регистрировать сигнал, частота которого пропорциональна скорости. Характерное значение этой частоты определяется линейным размером области регистрации ФД и временем пересечения этой области элементом объекта. В принципе, задача решена, но очень неточно. Это так называемый низкочастотный сигнал. Для увеличения точности измерений необходимо сузить спектр частот, генерируемый движущимся объектом. И для этого есть радикальное средство – пространственный фильтр. Это термин из области оптических растровых датчиков.
В случае лазерных датчиков – это просто создание интерференционной картины, т.е. периодической модуляции освещенности объекта в пределах лазерного пучка (это область детектирования). Это возможно благодаря свойству когерентности лазерного излучения – все фотоны в пучке сфазированы. Достаточно разделить исходный пучок на два пучка, и свести их под углом к другу. Это и есть в данном случае пространственный фильтр. Теперь любой перепад профиля или яркости объекта, пересекающий эту периодическую структуру, даст отраженный сигнал, интенсивность которого промодулирована с частотой «период освещенности» – «скорость его пересечения».
При этом, чем больше число созданных периодов – тем уже спектр сигнала – единичный перепад профиля или яркости объекта будет генерировать не один импульс, а множество (цуг) импульсов, число которых определяется количеством периодов интерференционной картины. На практике – например, при диаметре пучка на объекте 5 мм и периоде интерференции 0,05 мм – получаем 100 штрихов интенсивности, соответственно, цугов сигнала, т.е. спектр сузился примерно в 100 раз по сравнению с вышеописанным низкочастотным сигналом (который теперь малоинформативный, более того, мешает и так и называется – паразитный). Отметим, что достаточно 20 – 30 штрихов для достижения точности измерений лучше 0,1%.
В случае оптических датчиков – объект освещается однородным источником (просто лампочка или светодиод) – а периодическая структура (растр) находится внутри датчика. При этом он получается гораздо более защищенным (это как в спорте – санки и бобслей) – но возникает множество проблем, основная из которых – зависимость частотного отклика ( коэффициент пропорциональности между частотой регистрируемого сигнала и скоростью объекта в Гц/(м/с)) от расстояния до объекта. Забегая вперед, отметим, что сейчас эта проблема решена кардинально.
Подробный обзор по лазерным и оптическим датчикам скорости (способы создания пространственных фильтров, методы обработки сигналов…) можно найти в монографии [1]. На двух сотнях страниц описана вся теория. Только не сказано, как же на этой основе сделать работающий в реальных суровых условиях (температурный диапазон, различные поверхности и изменения расстояний до них в процессе измерений) датчик.
Производителей реальных бесконтактных датчиков в мире не так много – порядка десятка фирм выпускают лазерные датчики, еще меньше – оптические. В данной статье рассмотрим подробнее датчики обоих типов, производимые российской фирмой ООО «ПТП«Сенсорика-М».
Поскольку она недавно вышла на этот рынок, при создании датчиков использовались самые последние достижения, как в области «железа», так и в математических алгоритмах обработки сигнала плюс оригинальные технические решения, созданные совместно со специалистами Института общей физики РАН. Например, оригинальный оптический моноблок для лазерного датчика, основанный на принципе деления пучка по волновому фронту обеспечивает стабильную интерференционную картину, нечувствительную к изменениям температуры, с нулевой разностью хода пучков, что обеспечивает максимальный контраст штрихов в большом диапазоне расстояний до объекта. При этом отсутствуют какие-либо юстировки оптического блока. Оптическая схема приемной растровой системы оптического датчика полностью устраняет зависимость измеренной скорости от расстояния до объекта при сохранении высокой светосилы оптики. На данное техническое решение получены патенты России и Германии [2] .
В приемной аналоговой электронике и в части аппаратной обработки сигнала также используются самые современные микросхемы и микроконтроллеры с сигнальными процессорами, что позволяет измерять скорость с высокой частотой и реализовывать различные выходные сигналы – аналоговые, частотные, цифровые. Выпускается широкая линейка датчиков обоих типов, с номинальными расстояниями до объекта от 15 до 130 см и диапазоном измеряемых скоростей от 0,01 до 100 м/с для самых различных применений в промышленности и на транспорте (подробнее можно посмотреть на сайте компании). В 2014 г. лазерный датчик внесен в Госреестр СИ (средств измерений), оптический датчик будет внесен в Госреестр в 2015г.
Отметим, что оба типа датчиков измеряют пройденный путь (длину, которая обычно и требуется на практике) по измеренной скорости (интеграл скорости по времени). При этом техническая точность измерений (возможности датчика в смысле повторяемости измерений) уже достигла своего практического предела и превышает обычные потребности практики. Например, в технических данных приводится точность измерений длины Далее приведем несколько примеров применения датчиков с оценкой точности и повторяемости измерений .
Высота установки датчика – примерно 50 см (допустимо от 35 до 65 см). Частота измерений: 54,2 Гц, пределы измерения скорости: 0,02 – 110 Км/ч. Проезд по замкнутой траектории длиной около 1 Км (в условиях города, день, солнечно, температура -7 ˚С). Движение с переменной скоростью (0-50 Км/ч), с несколькими остановками. Результаты измеренного пути по трем заездам: 1055,740 м, 1056,244 и 1055,33 м, т.е. повторяемость измерений составила В статье приводится краткий обзор принципов измерения скорости и пройденного пути (длины) бесконтактными лазерными и оптическими датчиками и демонстрируются технические параметры этих приборов на примере продукции российского предприятия ООО «ПТП«Сенсорика-М».
Рис. 1. Оптический датчик ИСД‑3 и лазерный ИСД‑5, закрепленные на автомобиле во время тестовых заездов.
Номинальная высота оптического датчика ИСД-3 – 50 см, лазерного датчика ИСД-5 -130 см, но установлен он на высоте 100 см. На прямом участке асфальтовой дороги проведено 4 заезда (по 2 в каждую сторону) примерно одинаковой длины и сравнивалась относительная разность показаний датчиков. Результаты представлены в Таблице.
Табл.1. Результаты параллельного измерения одного и того же пути обоими датчиками.
Номер заезда | |||
1 | 1345,68 | 1345,01 | — 0,05 |
2 | 1394,01 | 1395,08 | 0,07 |
3 | 1382,51 | 1382,73 | 0,016 |
4 | 1345,14 | 1343,06 | -0,15 |
Средняя относительная разница | 0,03 ± 0,1 % |
Таким образом, реальное качество измерений обоих датчиков в дорожных применениях одинаково и относительная повторяемость измерений составляет сотые доли процента. При этом отметим, что вообще для дорожных применений предпочтительно использовать оптический датчик, поскольку он значительно более устойчив к внешним неблагоприятным условиям, как это упоминалось выше (температура, снег, дождь…), в частности, он малочувствителен к загрязнениям входной оптики – это как фотоаппарат – объектив может быть совсем грязным, но фотографировать, в принципе, не мешает. В то же время попадание, например, капли воды на выходную оптику лазерного датчика может сильно исказить интерференционную картину на объекте.
Для общего представления качества измерений на рис.2 представлен график скорости разгона – торможения локомотива с товарным составом ( Щербинский ЖД полигон, датчик скорости и дистанции – ИСД-3, номинальное расстояние 80 см, устанавливался на днище локомотива и «смотрел» прямо на шпалы).
Рис. 2. График скорости разгона и торможения локомотива с товарным составом.
График позволяет оценить мгновенную точность измерений скорости, поскольку движение ЖД состава – пример максимальной плавности скорости. Также в качестве иллюстрации приводятся очень интересные и познавательные графики – тормозные испытания автомобильных шин на льду (ледовый каток «Арена» в Мытищах, использовался оптический датчик). На рис. 3а представлены результаты пяти заездов разгон – торможение на зимних не шипованных шинах, на рис 3б – то же самое на шипованных.
Рис. 3. Точность, с которой оптический датчик ИСД-3 измеряет скорость разгона и торможения автомобиля на льду: а – автомобиль на зимних не шипованных шинах; б – автомобиль на шипованных шинах.
Обратите внимание, что пички скорости – не шумы измерений, а совершенно реальны, именно так движется автомобиль на льду.
Данные датчики, конечно — же используются и в промышленности. Здесь приведем только один яркий демонстрационный пример: измерение длины стекла. Объект: вращающийся диск из полированного стекла с максимально чистой поверхностью. Измеритель – лазерный, с номинальным рабочим расстоянием 130 см (в реальности стекло горячее, поэтому требуются измерения с больших дистанций). На диске нанесена метка – начало и конец измерений окружности, которая считывалась датчиком. Длина измеряемой окружности — 2,173 м. Проведено две серии измерений по 7 и 11 измерений. Средняя измеренная длина составила 2,1732 и 2,1733 м при стандартном отклонении 0,034 и 0,036%.
Из последних разработок ООО «ПТП«Сенсорика-М» можно также упомянуть двумерные лазерные датчики, позволяющие, в частности, измерять поступательную скорость вращающейся на рольгангах трубы – актуальная задача на участках нанесения изоляции на трубопрокатных заводах (серийный вариант будет доступен во втором квартале 2015 г.). И уж совсем экзотика – измерение скорости подводных аппаратов относительно среды (экспериментальный образец демонстрировался на форуме «Морская индустрия России» [3]). И много другого. Из-за ограниченности объема статьи здесь можно только посоветовать посетить сайт производителя.
Таким образом, «наши» бесконтактные датчики пути – скорости ни в чем не уступают мировым аналогам, а зачастую и превосходят их. При этом стоят на данный момент в несколько раз дешевле.
С. Ф. Растопов, к. ф.-м. н., технический специалист,
ООО «ПТП«Сенсорика-М»., г. Москва,
тел.: (499) 753-3990, (499) 487-0363
Ссылки:
1. Y. Aizu T. Asakura, Spatial Filtering Velocimetry, Fundamentals and Applications, Springer Series in Optical Sciences (Book 116), 2005, 212р.
2. Патент РФ № 2482499 и Патент DE 11 2011 102 253 B4.
3. IV Международный форум «Морская индустрия России», выставочный комплекс «Гостиный двор», Москва, 20-22 мая 2014 г.
Источник статьи: http://www.sensorika.com/ru/lib/datchiki-skorosti-i-puti/
Оптическое измерение скорости автомобиля
Измерение скорости: радары или видео?
Компания «Технологии Распознавания» имеет значительный опыт создания и внедрения аппаратно-программных комплексов, применяемых службами ГИБДД для контроля дорожного движения, в том числе и для контроля скорости движения транспортных средств (далее — ТС). Многочисленные системы, в составе которых используются различные радары, уже эксплуатируются в разных регионах нашей страны и за рубежом.
По мере накопления собственного опыта эксплуатации комплексов на стационарных рубежах ДПС становилось ясно — применение радаров связано с рядом существенных недостатков, которых хотелось бы избежать.
Одновременно с этим формировалась идея измерять скорость ТС по видеоизображению. Сама эта идея не нова, однако существовавшие на то время методы и устройства на их основе были весьма примитивны и имели слишком высокую погрешность.
Сотрудники компании провели изыскательские работы по исследованию и усовершенствованию метода измерения скорости ТС по видеоизображению. Инженерам удалось классифицировать и исследовать все факторы, влияющие на точность измерения скорости по видео, и в итоге создать точную методику и измерительный комплекс на ее основе. В ноябре 2010 г. были завершены работы по сертификации СИ (средств измерения) в Госстандарте РФ и получено метрологическое свидетельство на средство измерения скорости ТС по видеокадрам «Автоураган»-ВС».
Важным звеном для обеспечения безопасности на дорогах являются комплексы видеофиксации нарушений ПДД. Особо значимые участки автодорог оборудованы автоматическими стационарными комплексами, которые в круглосуточном режиме осуществляют контроль над дорожной обстановкой. Один из видов контроля — это измерение скорости проезжающих ТС в целях выявления нарушителей скоростного режима. Для измерения скорости ТС в составе комплексов видеофиксации, как правило, используется радиолокационный доплеровский измеритель скорости — радар.
Радар имеет следующий принцип действия: в процессе работы он излучает радиосигнал в сторону движущихся ТС, тот отражается от автомобилей и возвращается обратно. По изменению отраженного сигнала вычисляется скорость движения транспортного средства, и вычисляется довольно точно, но.
Чем же так плох радар?
1. У сигнала, испускаемого радаром, есть такое понятие, как «диаграмма направленности». На этой диаграмме есть так называемые «боковые лепестки», которые могут захватывать отраженный сигнал от автомобилей, едущих сбоку от зоны контроля радара. В результате под луч радара может «попасть» более одного ТС. При этом радар является «слепым» прибором, т.е. сам он не может определить, сколько ТС попало под его лучи и скорость какого конкретно из этих ТС была измерена. В такой ситуации ошибка присвоения значения скорости может происходить, даже если соседнего автомобиля не видно на видеокадре.
Например: в кадре отображается грузовик-мусоровоз с измеренной скоростью 200 км/ч, которая ему «досталась» от «Мерседеса», проезжающего по соседней полосе и невидимого в кадре. Измеренная скорость явно не соответствует транспортному средству. Чем шире диаграмма направленности, тем больше вероятность таких артефактов измерения.
Описанная ситуация косвенно подтверждает факт неправильной работы комплекса с радаром, серьезно дискредитирующий данный метод. Таким образом, показания радара, сколь бы точными они ни были, можно считать достоверными только тогда, когда производится измерение скорости одиночных ТС — на трассах с разреженным движением.
Если же луч радара узкий (допустим, 2.5 м и менее), вероятность присвоения «чужой скорости» заметно уменьшается. Но возникает другая проблема. Видеокамера «видит» более широкую часть трассы. Тогда при плотном потоке движения в кадр видеокамеры может попасть более одного автомобиля. В этом случае, даже если радар произвел точные измерения скорости «по центру» зоны видимости, не существует убедительных доказательств, что измерена скорость именно данного ТС, а не другого, попавшего в кадр пусть даже частично. Такие кадры при выписке постановлений о выявленных нарушениях оператор вынужден отбраковывать, сколь бы явным ни казалось нарушение скоростного режима движения. Кроме того, при узком луче достаточно большое количество автомобилей просто объедут зону измерения — им достаточно всего лишь не соблюдать рядность.
Таким образом, при плотном потоке движения на городских трассах установка радара с узкой диаграммой направленности ведет к значительному числу пропусков регистрации скорости и/или отбраковки измеренных значений из-за неоднозначности доказательной базы. Опять же эффективность метода наблюдается лишь при измерении скорости одиночных ТС.
Принципиально радар может работать «под углом», с горизонтальным отклонением от вектора движения, но в этом случае еще более растет вероятность вышеизложенных артефактных измерений. Отсюда обязательная регламентация положения — радар должен располагаться строго над центром полосы движения. Но эта регламентация предопределяет сложную строительную конструкцию. Работа радара с консольного кронштейна в принципе возможна, но чтобы «дотянуться» до середины даже второй полосы нужны максимально длинные консоли. И при этом не следует забывать, что комплекс — это не только сам радар, но и видеокамера в термокожухе, осветитель, блоки питания — суммарный вес, тем более моноблока, большой, и он сосредоточен на краю консоли. Поэтому даже для двухполосных трасс желательны арки, фермы над трассами — а это достаточно дорогостоящее решение по сравнению с консольными кронштейнами.
2. Различные атмосферные явления, такие как сильный дождь, снег или грозовые разряды, могут непредсказуемо влиять на результат измерений радаром даже одиночных целей.
v Радар имеет ограничение измерения минимальной скорости — 20 км/ч. Меньшую скорость радар не измеряет в принципе. Это кажется не важным для выявления нарушений скоростного режима движения, но существуют задачи определения скорости именно при медленном движении — на ж/д переездах, в заторных ситуациях на трассах и т.п. В таких случаях радар для всех ТС будет выдавать значение 0.
3. Есть еще «социальный» недостаток у радаров. «Благодаря» своему принципу действия — непрерывному излучению — радар может быть обнаружен специальным устройством (радар-детектором или антирадаром), которым пользуются многие водители. А если они информированы, то снижают скорость на небольшом участке дороги, контролируемом радаром, а затем снова разгоняются. Такой прием сильно снижает эффективность применения радаров для выявления «гонщиков».
Чем же отличаются измерители скорости по видео от радарных методов?
1. Измерение скорости транспортных средств в плотном потоке. Если радары не предназначены для измерения скорости ТС в плотном потоке — они просто «путаются в показаниях», то для комплекса «АвтоУраган»-ВС это не является проблемой. Он измеряет скорость, основываясь на распознанном регистрационном (далее — рег.) знаке, т.е. ему в принципе не важно, сколько ТС находится в зоне контроля одновременно — скорость для каждого из них определяется НЕЗАВИСИМО.
2. В отличие от радарных систем в комплексе «АвтоУраган»-ВС полностью исключена возможность присвоения транспортному средству «чужой» скорости — если на фотоизображении ТС в протоколе рег. знак визуально читаемый, то, значит, измерение производилось по его изображению и выявленное значение скорости безусловно принадлежит данному ТС.
3. Распознавание может производиться под достаточно большим горизонтальным углом к вектору движения — до 30о. И этот угол никак не влияет ни на качество распознавания, ни, соответственно, на измерение скорости по видеоизображению. Если рег. знак конкретного автомобиля отчетливо виден в кадре, то проезжающие по соседней полосе другие автомобили никак не влияют на результат измерения скорости. Измеряющая видеокамера может располагаться сбоку от трассы и позволяет «видеть» зону контроля через полосу. Слева или справа — не имеет значения. А это значит, что можно не устанавливать сложные конструкции. Любой короткий консольный кронштейн решает дело.
Например, для контроля двух полос движения можно использовать уже установленную опору освещения, к которой на высоте 6 или более метров с помощью консольного кронштейна с минимальным вылетом, достигающим края первой полосы, будет крепиться лишь измеряющая видеокамера. Такое крепление позволяет минимизировать возможность перекрывания большегрузным, «высоким» транспортом более удаленной полосы. На краю кронштейна можно установить камеру, контролирующую вторую, дальнюю полосу, а камеру для ближней полосы можно разместить вообще около опоры (без выноса). Такая конструкция упрощает и удешевляет установку многократно. Аналогично решается установка камер и для трех полос. В этом случае консоль будет незначительно длинее. То же и для дорог с двусторонним движением, по две-три полосы в каждом направлении. Одно направление — с существующей опоры слева, второе — с существующей опоры справа. Камеры лишь слегка будут сдвинуты относительно друг друга, но рубеж будет полноценный. И арки во всю ширину дороги не нужны.
4. Дождь и снег не оказывают искажающего воздействия на результат измерения — если рег. знак ТС виден в кадре и визуально различим, то он будет распознан и скорость автомобиля будет определена точно.
5. При измерении скорости по видеоизображению нет понятия «минимальная скорость измерения». Измеряется средняя скорость ТС в зоне контроля, и чем медленнее он едет, тем точнее измеряется скорость. Для «АвтоУрагана»-ВС диапазон начинается от 1 км/ч только потому, что меньшего целого значения скорости не бывает (комплекс распознает рег. знаки и неподвижных автомобилей, но раз нет движения, некорректно говорить: «нулевая скорость»).
Значение «максимальной скорости» для «АвтоУрагана»-ВС на сегодняшний день ограничено уровнем развития оптической техники. Если увеличить вдвое глубину зоны контроля при сохранении текущей чувствительности матрицы камеры и резкости изображения по всему кадру, то предел измеряемой скорости теоретически также удвоится. В данное время прибор позволяет с требуемой точностью измерять скорость, не превышающую 255 км/ч.
6. «Автоураган»-ВС в процессе работы выглядит как обычная камера наблюдения и не излучает никаких сигналов, которые могут быть обнаружены «антирадарами» или подобными устройствами.
7. Важное преимущество «АвтоУраган»-ВС — это отсутствие радара как еще одного прибора. Нет дополнительного источника поломок, старения, дополнительных контактов и проводов.
А есть ли недостатки у метода измерения по видеокадрам?
Недостатки есть у любого метода. Есть они и в данном случае. Всего их три.
Первый — прибор не производит измерения скорости по видеоизображению, если рег. знак ТС отсутствует, не распознан или распознан недостаточно надежно с точки зрения системы. Но ведь для автомобилей, рег. знак которых на кадрах не виден (или виден, но нечитаем), невозможно автоматически формировать постановление о нарушении скоростного режима движения! Оно будет судебно оспорено. Поэтому, учитывая высокое качество распознавания номеров системой «АвтоУраган»-ВС, которое обеспечивает распознавание практически всех визуально читаемых номеров, данный недостаток сходит на нет.
Второй недостаток — измерение скорости может осуществляться не по любым типам рег. знаков, а только по тем, которые описаны в программном обеспечении комплекса (те типы рег. знаков, размеры которых известны). На сегодняшний день количество поддерживаемых типов рег. знаков достаточно велико — это не только все знаки РФ, включая двустрочные и устаревшие знаки СССР, но и знаки практически всех стран СНГ, Евросоюза, многих стран Латинской Америки, США и даже Индии и Австралии. Поэтому данный нюанс является недостатком только при использовании в тех странах, рег. знаки которых пока не поддерживаются.
Ну и, наконец, основной недостаток — более высокая величина погрешности, по сравнению с радарами. В заявленных характеристиках указывается «±5%». Это несколько выше, чем соответствующий показатель у «радарного» комплекса. Однако радиолокационному методу измерения скорости уже много лет. За годы эксплуатации приборы совершенствовались и повышали свои точностные характеристики. Новым же методам и приборам на их основе не принято изначально присваивать высокую точность. Через год-два эксплуатации на практике реальные характеристики будут улучшены, что происходит, в общем, со всеми приборами. Но на сегодняшний день приходится мириться именно с декларированной точностью.
Принцип действия метода
Метод измерения скорости ТС по видеоизображению основан на классическом, косвенном измерении скорости. Поскольку эталона скорости, с которым можно было бы сравнить результат измерения, не существует и прямое измерение произвести нельзя, то производится косвенное измерение. Видеокамера отображает некоторый, заранее измеренный участок дороги. Когда транспортное средство пересекает данный участок дороги в поле зрения видеокамеры, производится распознавание рег. знака, а затем измерение пройденного пути и времени, за которое ТС прошло этот путь. Разработанный метод учитывает все возможные влияния на результат измерения и позволяет снизить погрешность измерения до метрологически приемлемого значения. 3 февраля 2011 г. Федеральный институт промышленной собственности вынес решение о выдаче патента на изобретение по данному методу.
Значение скорости движения ТС вычисляется как отношение пути, пройденного некоторой его фиксированной точкой в зоне контроля видеокамеры, ко времени, за которое этот путь был пройден. В системе «Автоураган»-ВС за такую опорную точку взят центр пластины номерного знака.
Измерение времени производится по времени следования видеокадров.
Аналоговая CCTV-видеокамера стандарта PAL (по ГОСТ 7845-92) формирует полные видеокадры каждые 40 миллисекунд.
Действительный период следования видеокадров имеет весьма незначительное отклонение от 40 мс, что соответствует погрешности не более ±0,02% (т.е. пренебрежимо мало). Программное обеспечение комплекса «АвтоУраган»-ВС четко фиксирует время каждого видеокадра, благодаря чему всегда можно вычислить временной интервал, за который автомобиль пересек зону контроля, от первого зафиксированного кадра до последнего.
Длина участка дороги в зоне контроля видеокамеры (для ее штатного, рекомендованного расположения) составляет около 6 метров. Двигаясь, например, со скоростью 80 км/ч, автомобиль проедет такой путь за 270 миллисекунд. Видеокамера формирует видеокадры каждые 40 миллисекунд. Это значит, что автомобиль во время проезда зоны контроля видеокамеры будет зафиксирован 6 раз (270 разделить на 40).
Измерение расстояния — это вычисление пути, которое автомобиль проехал от первого до последнего зафиксированного кадра.
Перед началом эксплуатации комплекса, после монтажа видеокамеры производится так называемая «градуировка» комплекса — измерение участка дороги, отображаемого видеокамерой (зоны контроля видеокамеры), и геометрических параметров взаимного расположения видеокамеры и ее зоны контроля. (На рисунке изображена схема градуировки: измерение высоты подвеса видеокамеры над дорогой h, расстояние от точки проекции видеокамеры на дорогу до начала зоны контроля L1 и до конца зоны контроля L2.)
Когда ТС проезжает в зоне контроля видеокамеры, программное обеспечение «АвтоУраган»-ВС распознает его рег. знак и одновременно отслеживает перемещение знака в кадре. Для каждого кадра с видимым распознанным рег. знаком ТС определяются координаты точки центра пластины. Далее, с учетом взаимного расположения видеокамеры и ее зоны контроля, координаты точки центра пластины рег. знака пересчитываются в плоскость дороги и вычисляется пройденный путь (точнее, его проекция на дорогу).
И в завершение, по запатентованной методике определяется высота подвеса пластины рег. знака на ТС по известным размерам этой пластины.
Реальная ширина номерной пластины известна из результата распознавания (Размеры российских рег. знаков заданы ГОСТ Р 50577-93.)
С учетом высоты подвеса пластины определяется точное значение пройденного пути ТС в зоне контроля видеокамеры. Разделив значение пройденного пути на время между первым и последним кадром, получим искомую среднюю скорость автомобиля в зоне контроля.
Заключение
В заключение хотелось бы сказать, что благодаря колоссальной работе, проделанной нашими специалистами, можно с уверенностью утверждать о наличии серьезного потенциала повышения точности измерения скорости этим методом. Благодаря своей простоте и прозрачности данный метод безусловно завоюет доверие и популярность у всех участников дорожного движения.
Ю.Л. Зарубин, генеральный директор ООО «Технологии Распознавания»
Подписка на издание в любом почтовом отделении России
Источник статьи: http://www.stopgazeta.ru/technique/videofiksatsiya/izmerenie_skorosti_radary_ili_video/