Построить график скорости если движение автомобиля задано формулой

Содержание
  1. Вычисление перемещения по графику проекции скорости
  2. Теория
  3. Задачи
  4. . для школьных учителей . Как теперь смотреь флэш-файлы!
  5. Типовые задачи на уравнения и графики прямолинейного равноускоренного движения. Примеры решения задач по физике. 9-10 класс
  6. А теперь к задачам!
  7. . для школьных учителей . Как теперь смотреь флэш-файлы!
  8. Типовые задачи на уравнения и графики прямолинейного равноускоренного движения. Примеры решения задач по физике. 9-10 класс
  9. А теперь к задачам!
  10. Уравнение движения, графики равномерного прямолинейного движения
  11. п.1. Прямолинейное равномерное движение на координатной прямой
  12. п.2. Уравнение прямолинейного равномерного движения
  13. п.3. Удобная система отсчета для решения задачи о прямолинейном движении
  14. п.4. График движения x=x(t)
  15. п.5. Как найти уравнение движения по графику движения?
  16. п.6. График скорости vx=vx(t)
  17. п.7. Как найти путь и перемещение по графику скорости?
  18. п.8. Задачи

Вычисление перемещения по графику проекции скорости

Из кодификатора по физике, 2020.
«1.1.3. Вычисление перемещения по графику зависимости υ(t).»

Теория

Пусть задан график зависимости проекции скорости от времени t (рис. 1).

Проекция перемещении тела за промежуток времени от до численно равна по величине площади фигуры, ограниченной графиком , осью времени 0t и перпендикулярами к и (см. рис. 1, площадь выделена штриховкой).

Проекцию перемещения на ось 0Х будем считать:

положительной, если проекция скорости на данную ось будет положительной (тело движется по направлению оси) (см. рис. 1);

отрицательной, если проекция скорости на данную ось будет отрицательной (тело движется против оси) (рис. 2).

Путь s может быть только положительным:

Напоминаем формулы для расчета площадей фигур:

Задачи

Задача 1. По графику проекции скорости тела (рис. 3) определите проекцию его перемещения между 1 и 5 с.

Решение. Проекция перемещения за промежуток времени Δt= – =5с–1с=4c численно равна площади фигуры, ограниченной графиком , осью времени 0t и перпендикулярами к с и с (рис. 4, площадь выделена штриховкой). Фигура ABCD — это трапеция, ее площадь равна

где DC = Δt = 4 c, AD = 3 м/c, BC = 5 м/c. Тогда S = 16 м.
Проекция перемещения 0′ alt=’< s >_< x >>0′/>, т.к. проекция скорости 0′ alt=’< v >_< x >>0′/>.
м.

Задача 2. Автомобиль движется по прямой улице вдоль оси X. На рисунке 5 представлен график зависимости проекции скорости автомобиля от времени. Определите путь, пройденный автомобилем в течение указанных интервалов времени.

Интервал времени Путь
от 0 до 10 с Ответ: м.
от 30 до 40 с Ответ: м.

В бланк ответов перенесите только числа, не разделяя их пробелом или другим знаком.

Решение. Путь за промежуток времени Δt = – численно равна площади фигуры, ограниченной графиком осью времени 0t и перпендикулярами к и .

На интервале [0 с, 10 с] ищем площадь треугольника (рис. 6).

где a = 20 м/c, . Тогда м.

Путь равен значению площади (путь всегда положительный, т.е. s > 0).

На интервале [30 с, 40 с] ищем площадь трапеции (см. рис. 6).

где a = 10 м/c, b = 15 м/c, h = Δt = 40 c – 30 с = 10 с. Тогда м.

Задача 3. Определите за первые 4 с (рис. 7):

а) проекцию перемещения тела;

б) пройденный путь.

Ответ: а) ____ м; б) ____ м.

Решение. Проекция перемещения за время (пер-вые 4 с) численно равна площади фигуры, ограниченной графиком , осью времени 0t и перпендикулярами к с и с (рис. 8, площадь выделена штриховкой).

Так как при с проекция скорости поменяла знак, то получили две фигуры, два треугольника, площади которых равны:

а) Проекция перемещения 0′ alt=’< s >_< 1x >>0′/>, т.к. проекция скорости 0′ alt=’< v >_< 1x >>0′/>; проекция перемещения , т.к. проекция скорости . В итоге получаем: 45м — 5м = 40 м. б) Путь равен значению площади (путь всегда положительный, т.е. s>0).

, s = 45 м + 5 м = 50 м.

Задача 4. График зависимости проекции скорости материальной точки, движущейся вдоль оси 0Х, от времени изображен на рисунке 9. Определите перемещение точки, которое она совершила за первые 6 с.

Решение. Проекция перемещения за время (пер-вые 6 с) численно равна площади фигуры, ограниченной графиком , осью времени 0t и перпендикулярами к и (рис. 10, площадь выделена штриховкой).

Так как при и проекция скорости меняет знак, то получили три фигуры, три треугольника, площади которых равны:

Проекция перемещения 0′ alt=’< s >_< 1x >>0′/>, т.к. проекция скорости 0′ alt=’< v >_< 1x >>0′/>.

Проекция перемещения , т.к. проекция скорости . Проекция перемещения 0′ alt=’< s >_< 3x >>0′/>, т.к. проекция скорости 0′ alt=’< v >_< 3x >>0′/>. В итоге получаем:

Источник статьи: http://ege-study.ru/materialy-ege/kurs-fiziki-teoriya/vychislenie-peremeshheniya-po-grafiku-proekcii-skorosti/

. для школьных учителей .
Как теперь смотреь флэш-файлы!





Типовые задачи на уравнения и графики прямолинейного равноускоренного движения. Примеры решения задач по физике. 9-10 класс

Задачи по физике — это просто!

Не забываем, что решать задачи надо всегда в системе СИ!

А теперь к задачам!

Элементарные задачи из курса школьной физики по кинематике.

Бесполезно разбирать эти задачи, если вы не знаете формул прямолинейного равноускоренного движения!
Тема трудная, и без азов, как вы сами понимаете, никуда!

Задача на определение ускорения по заданному графику скорости

Дано: график скорости движущегося тела.
Найти: определить ускорение тела по графику скорости.

Задача на составление описания движения тела и построение графика скорости по заданному уравнению скорости

Дано: уравнение скорости движущегося тела.
Найти: составить описание движения тела, построить график скорости.

Задача на составление описания движения и уравнения скорости по заданному графику скорости

Дано: график скорости движущегося тела.
Найти: составить описание движения и уравнение скорости.

Задачи на составление описания движения тела и построение графика скорости по заданному уравнению движения

Задача 1

Дано: уравнение движения тела.
Найти: составить описание движения тела, построить график скорости.

Задача 2

Дано: уравнение движения тела.
Найти: составить описание движения тела, построить график скорости.

Также полезно рассмотреть решения подобных задач при задании уравнений движения c разными знаками коэффициентов при t и при отсутствии некоторых членов уравнения движения.

Источник статьи: http://class-fizika.ru/sd014.html

. для школьных учителей .
Как теперь смотреь флэш-файлы!





Типовые задачи на уравнения и графики прямолинейного равноускоренного движения. Примеры решения задач по физике. 9-10 класс

Задачи по физике — это просто!

Не забываем, что решать задачи надо всегда в системе СИ!

А теперь к задачам!

Элементарные задачи из курса школьной физики по кинематике.

Бесполезно разбирать эти задачи, если вы не знаете формул прямолинейного равноускоренного движения!
Тема трудная, и без азов, как вы сами понимаете, никуда!

Задача на определение ускорения по заданному графику скорости

Дано: график скорости движущегося тела.
Найти: определить ускорение тела по графику скорости.

Задача на составление описания движения тела и построение графика скорости по заданному уравнению скорости

Дано: уравнение скорости движущегося тела.
Найти: составить описание движения тела, построить график скорости.

Задача на составление описания движения и уравнения скорости по заданному графику скорости

Дано: график скорости движущегося тела.
Найти: составить описание движения и уравнение скорости.

Задачи на составление описания движения тела и построение графика скорости по заданному уравнению движения

Задача 1

Дано: уравнение движения тела.
Найти: составить описание движения тела, построить график скорости.

Задача 2

Дано: уравнение движения тела.
Найти: составить описание движения тела, построить график скорости.

Также полезно рассмотреть решения подобных задач при задании уравнений движения c разными знаками коэффициентов при t и при отсутствии некоторых членов уравнения движения.

Источник статьи: http://class-fizika.ru/sd014.html

Уравнение движения, графики равномерного прямолинейного движения

п.1. Прямолинейное равномерное движение на координатной прямой

Система отсчета, с помощью которой можно описать прямолинейное движение состоит из:
1) тела отсчета; 2) координатной прямой; 3) часов для отсчета времени.
Пусть телом отсчета будет дом.
В начальный момент времени машина стоит в 20 м справа от дома.

Рассмотрим движение машины со скоростью 10 м/с вправо.
Направим координатную прямую параллельно вектору скорости, вправо.

Составим таблицу перемещений за первые 4 секунды:

t, c 0 1 2 3 4
x, м 20 30 40 50 60

Стартуя с точки x0=20, машина каждую секунду удаляется от дома еще на 10 м.
Пройденный путь за 2 секунды – 10·2=20 м, за 3 секунды – 10·3=30 м, за t секунд s=vt метров. Значит, для произвольного времени t можем записать координату x в виде: \begin x=x_0+s=x_0+vt\\ x=20+10t \end

Если при тех же начальных условиях и направлении координатной прямой машина будет двигаться влево, получим таблицу:

t, c 0 1 2 3 4
x, м 20 10 0 -10 -20

В этом случае координата x в любой момент времени t имеет вид: \begin x=x_0-st=x_0-vt\\ x=20-10t \end Если же машина никуда не едет, её скорость v=0, и координата x=x0 в любой момент времени t.

п.2. Уравнение прямолинейного равномерного движения

Зависимость координаты тела от времени в механике называют уравнением движения.
Если уравнение движения известно, то мы можем решить основную задачу механики.

п.3. Удобная система отсчета для решения задачи о прямолинейном движении

При решении задачи можно выбрать различные тела отсчета и связать с ними различные системы координат. Как правило, некоторая система отсчета является наиболее удобной для решения данной задачи в том смысле, что в ней уравнение движения выглядит и решается проще, чем в других системах.

При решении задач на прямолинейное движение телом отсчета может быть неподвижная поверхность (земля, пол, стол и т.п.), само движущееся тело или другое тело.
При этом системой координат является координатная прямая, параллельная направлению движения (вектору перемещения) тела, уравнение движения которого мы хотим получить.

Проекции скорости и перемещения на координатную прямую могут быть положительными, равными нулю или отрицательными. Величины скорости и перемещения будут равны длинам соответствующих проекций.

п.4. График движения x=x(t)

Сравним полученное уравнение движения \(x(t)=x_0+v_x t\) с уравнением прямой \(y(x)=kx+b\) (см. §38 справочника по алгебре для 7 класса).

В уравнении движения роль углового коэффициента \(k\) играет проекция скорости \(v_x\), а роль свободного члена \(b\) – начальная координата \(x_0\).

Построим графики зависимости координаты от времени для нашего примера:

x=20+10t — машина движется вправо (в направлении оси OX)
x=20-10t — машина движется влево (в направлении, противоположном оси OX)
x=20 — машина стоит

п.5. Как найти уравнение движения по графику движения?

п.6. График скорости vx=vx(t)

Для рассмотренного примера:

п.7. Как найти путь и перемещение по графику скорости?

Пусть тело движется прямолинейно равномерно, зависимость его координаты от времени описывается уравнением: $$ x(t)=x_0+v_x t $$ Тогда в некоторый момент времени \(t_1\) координата равна \(x_1=x_0+v_x t_1\).
Несколько позже, в момент времени \(t_2\gt t_1\) координата равна \(x_2=x_0+v_x t_2\).
Если \(v_x\gt 0\), то пройденный за промежуток времени \(\triangle t=t_2-t_1\) путь равен разности координат: $$ s=x_2-x_1=(x_0+v_x t_2)-(x_0+v_x t_1)=x_0-x_0+v_x (t_2-t_1)=v_x \triangle t $$ В общем случае, т.к. \(v_x\) может быть и отрицательным, а путь всегда положительный, в формуле нужно поставить модуль: $$ s=|v_x|\triangle t $$
Изобразим полученное соотношение на графике скорости:

Проекция скорости \(v_x\) может быть не только положительной, но и отрицательной.
Если учитывать знак, то произведение: $$ \triangle x=v_x \triangle t $$ дает проекцию перемещения на ось OX. Знак этого произведения указывает на направление перемещения.

Проекция перемещения может быть как положительной, так и отрицательной или равной 0.

п.8. Задачи

Задача 1. Спортсмен бежит по прямолинейному участку дистанции с постоянной скоростью 8 м/с. Примите \(x_0=0\) и запишите уравнение движения.
а) Постройте график движения \(x=x(t)\) и найдите с его помощью, сколько пробежит спортсмен за \(t_1=5\ с\), за \(t_2=10\ с\);
б) постройте график скорости \(v=v(t)\) и найдите с его помощью, какой путь преодолеет спортсмен за промежуток времени \(\triangle t=t_2-t_1\)?

По условию \(x_0=0,\ v_x=8\).
Уравнение движения: \(x=x_0+v_x t=0+8t=8t\)
а) Строим график прямой \(x=8t\) по двум точкам:


По графику находим: \begin x_1=x(5)=8\cdot 5=40\ \text<(м)>\\ x_2=x(10)=8\cdot 10=80\ \text <(м)>\end
б) Скорость \(v_x=8\) м/с — постоянная величина, её график:

$$ t_1=5\ с,\ \ t_2=10\ с $$ Пройденный путь за промежуток времени \(\triangle t=t_2-t_1\) равен площади заштрихованного прямоугольника: $$ s=v_x \triangle t=8\cdot (10-5)=40\ \text <(м)>$$ Ответ: а) 40 м и 80 м; б) 40 м

Задача 2. Космический корабль движется прямолинейно с постоянной скоростью.
Известно, что через 1 час после старта корабль находился на расстоянии 38 тыс.км от астероида Веста, а через 2 часа после старта – на расстоянии 56 тыс.км.
а) постройте график движения корабля, найдите по графику уравнение движения.
б) на каком расстоянии от астероида находился корабль в начальный момент времени?
в) на каком расстоянии от астероида будет находиться корабль через 4 часа после старта?
г) чему равна скорость корабля в километрах в секунду?

а) Будем откладывать время в часах, а расстояние в тыс.км
Отмечаем точки A(1;38) и B(2;56), проводим через них прямую.
Полученная прямая и есть график движения \(x=x(t)\).

Найдем скорость корабля \(v_x\): $$ v_x=\frac=\frac<56-38><2-1>=18\ (\text<тыс.км/ч>) $$ Найдем начальную координату \(x_0\): $$ x_0=x_1-v_x t_1=38-18\cdot v_1=20\ (\text<тыс.км/ч>) $$ Получаем уравнение движения: $$ x(t)=x_0+v_x t,\ \ x(t)=20+18t $$ где \(x\) – в тыс.км, а \(t\) – в часах.

б) В начальный момент времени корабль находился на расстоянии \(x_0=20\) тыс.км от астероида.

в) Через 4 часа после старта корабль будет находиться на расстоянии $$ x(4)=20+18\cdot 4=92\ (\text<тыс.км>) $$
г) Переведем скорость в км/с: $$ 18000\frac<\text<км>><\text<ч>>=\frac<18000\ \text<км>><1\ \text<ч>>=\frac<18000\ \text<км>><3600\ \text>=5\ \text <км/c>$$ Ответ:
а) \(x(t)=20+18t\) (\(x\) в тыс.км, \(t\) в часах); б) 20 тыс.км; в) 92 тыс.км; г) 5 км/с

Источник статьи: http://reshator.com/sprav/fizika/7-klass/uravnenie-dvizheniya-grafiki-ravnomernogo-pryamolinejnogo-dvizheniya/

Читайте также:  Количество материала для покраски автомобиля
Оцените статью