«Рулевое управление.»
учебно-методическое пособие на тему
Учебно-методическое пособие на тему: «Рулевое управление.»
Скачать:
Вложение | Размер |
---|---|
rulevoe_upravlenie.doc | 245 КБ |
Предварительный просмотр:
КОМИТЕТ ПО ОБРАЗОВАНИЮ
ГБОУ НПО АМПЛ № 77
Тема: Рулевое управление
Составитель: мастер п/о, преподаватель – Лучковский Р.Н.
- Введение 3 стр.
- Устройство и принцип действия рулевого управления 4 стр.
- Неисправности устройства рулевого механизма 10 стр.
- Возможные неисправности рулевого управления
и методы их устранения 11 стр.
- С каждым годом автомобильное движение на дорогах неуклонно возрастает. В таких условиях важнейшее значение приобретает конструкция транспортных средств, отвечающая современным требованиям безопасности движения.
- На безопасность движения огромное влияние оказывает конструкция рулевого управления, как важнейший фактор взаимодействия водителя с дорогой.
Рулевым управлением называется совокупность устройств, осуществляющих поворот управляемых колес автомобиля.
- Устройство и принцип действия рулевого управления
- Рулевое управление служит для изменения направления движения автомобиля. При неподвижной передней оси изменение направления движения автомобиля осуществляется поворотом передних управляемых колес.
Для того чтобы в движении автомобиль на повороте колеса его имели качение без бокового скольжения, они должны катиться по окружностям, описанным из одного центра, называемой центром поворота. В этом центре О (рис.1) должны пересекаться продолжения осей всех колес. Для соблюдения данного условия внутреннее к центру поворота управляемое колесо должно поворачиваться круче, т.е. на больший угол, чем наружное колесо. Для одновременного поворота колес на необходимые различные углы служит рулевая трапеция.
Рис.1. Схема поворота автомобиля
В трапецию входят (рис. 2, а) передняя ось 5, рулевые рычаги 3 и 6, соединенные с поворотными кулаками 1 и 7, и поперечная рулевая тяга 4. Поворотные кулаки шарнирно соединены с осью шкворнями 2.
Рис. 2. Схемы рулевых трапеций
При повороте одного колеса через рычаги 3 и 6 и тягу 4 поворачивается и другое колесо. При этом вследствие изменения положения поперечной тяги 4 относительно передней оси внутреннее к центру поворота колесо поворачивается на угол а (рис. 2, б), больший, чем угол Р поворота наружного колеса.
Правильность соотношения угла а и Р поворота колес обеспечивается соответствующим подбором угла наклона рулевых рычагов к продольной оси автомобиля и длины рулевых рычагов и поперечной тяги.
Кроме трапеции в рулевое управление входят (рис. 3) рулевое колесо / с валом 3, установленным в рулевой колонке 2, и рулевой механизм 4, заключенный в картер, а также рулевая сошка 5,продольная рулевая тяга 6, рулевой рычаг 7 продольной тяги.
Рис. 3. Схема устройства рулевого управления
При повороте рулевого колеса / в ту или другую сторону вместе с ним вращается вал 3, приводя в действие рулевой механизм 4, поворачивающий сошку 5. Нижний конец сошки перемещается вперед или назад, поворачивая через тягу 6 рулевой рычаг 7 с поворотным кулаком, соединенным шарнирно с осью 10. Через рулевые рычаги 8 и поперечную тягу 9 на соответствующий угол поворачивается и другой кулак 11 с установленным на его цапфе колесом.
Рулевую нерасчлененную трапецию такого устройства применяют на грузовых автомобилях, у которых управляемые колеса установлены на общей оси, подвешенной на рессорах к раме.
При независимой подвеске колес у легковых автомобилей рулевую трапецию делают расчлененной с несколько измененным расположением тяг и рычагов. Расчлененная рулевая трапеция с передним (рис. 2, в) или задним (рис. 2, г) расположением обычно включает рулевую сошку 8, конец которой перемещается в поперечном направлении, и маятниковый рычаг 10, соединенные средней поперечной тягой 9.
Маятниковый рычаг 10 установлен шарнирно на оси в кронштейне, закрепленном на раме основания кузова. Концы сошки 8 и маятникового рычага 10 или средней тяги соединены шарнирно двумя промежуточными боковыми тягами 11 с рычагами 12 поворотных кулаков 13 или поворотных стоек колес. Такая схема с расчлененной рулевой трапецией обеспечивает правильный поворот управляемых колес при качании их на независимой подвеске.
У легковых автомобилей получает применение энергопоглощающее рулевое управление, повышающее безопасность водителя при аварии автомобиля. Такое рулевое управление имеет составной телескопический рулевой вал и колонку с фрикционными элементами или включает другие упругие элементы. В случае удара автомобиля о препятствие и смятия его передней части энергия удара поглощается в фрикционных или упругих элементах рулевого управления, а удар и перемещения не передаются на верхнюю часть его вала с рулевым колесом, предохраняя водителя от травм.
Рулевой механизм 4 (см. рис. 3) служит для передачи усилий от рулевого колеса 1 с валом 3 на сошку 5. Рулевой механизм имеет передаточное число, доходящее обычно до 15— 20, вследствие чего усилие, развиваемое на сошке, получается значительно больше, чем усилие, приложенное к рулевому колесу, что облегчает поворот рулевого колеса и управление автомобилем.
Наибольшее применение получил рулевой механизм, выполненный в виде пары — глобоидальный червяк и ролик на подшипниках качения.
Такой рулевой механизм состоит из стального глобоидального (т. е. с вогнутой поверхностью) червяка 2 (рис. 4), в зацепление с которым входит двух- или трехгребневой ролик 5.
Рис. 4. Рулевой механизм
Червяк 2 закреплен на рулевом валу 1 и установлен на подшипниках 11 в картере 10 рулевого механизма. Ролик 5 установлен на шариковом 9 или игольчатом 4 подшипнике на оси 3, закрепленной в головке вала 6. Бал лежит на подшипниках в приливе картера. На наружном конце вала закреплена сошка 7.
При повороте червяка ролик перемещается по его винтовой нарезке, поворачивая вал с сошкой. При вогнутой поверхности червяка получается правильное зацепление червяка с роликом при различных его положениях. В такой паре трение и износ значительно уменьшаются, так как при работе ролик не скользит, а катится по червяку.
Вогнутая поверхность червяка и дуга, по которой поворачивается ролик, описаны разными радиусами R 1 и R 2 из разных центров так, что дуги сближаются в средней плоскости и расходятся по краям. Вследствие этого обеспечиваются малый зазор между роликом и червяком в’ среднем положении и увеличенные зазоры в крайних положениях ролика. Это повышает чувствительность рулевого управления при среднем положении колес, облегчает вывод рулевого колеса из крайних положений и способствует более равномерному износу червяка.
Рулевой механизм расположен в картере 10, который крепится на раме и заполнен маслом.
Для поддержания правильного зацепления пары и устранения повышенных зазоров в рулевом механизме, что может вызвать большой свободный ход рулевого колеса, применяют регулировочные устройства. При этом регулируют осевой зазор червяка в подшипниках, осевой зазор вала сошки и зацепление пары. Регулировку осевого зазора червяка 2 и его подшипников 11осуществляют обычно с помощью прокладок 12, установленных под верхней или нижней крышкой 8 картера, или с помощью торцовой гайки, завернутой в картер. Регулировка глубины зацепления ролика 5 с червяком 2 осуществляется чаще всего осевым перемещением вала 6 сошки с помощью регулировочного винта 13, так как средняя диаметральная плоскость ролика несколько смещена относительно средней плоскости червяка на величину с.
Кроме рассмотренного рулевого механизма применяют рулевые механизмы других типов: винт-сектор, винт-гайка и др. В рулевом механизме, выполненном в виде пары винт-гайка, для уменьшения трения между ними в некоторых конструкциях рулевых управлений вводят непрерывную цепь циркулирующих стальных шариков. При этом трение скольжения в паре заменяется трением качения, что облегчает поворот рулевого колеса.
На автомобиле «Жигули» ВАЗ-2101 рулевое управление выполнено с расчлененной рулевой трапецией, имеющей заднее расположение, и шарнирами, не требующими смазки.
Рис.3. Схема рулевого управления автомобилей ВАЗ.
Рулевой механизм имеет пару — глобоидальный червяк (28) и двухгребневый ролик (10) на подшипниках качения, расположенную в картере (6) (рис.3), отлитом из алюминиевого сплава.
Червяк (28) напрессован на вал (31), установлен в картере на двух радиально-упорных шарикоподшипниках. Натяг в радиально-упорных шарикоподшипниках регулируется прокладками (12), поставленными под торцевой крышкой (13), прикрепленной к картеру болтами. Вал червяка (31) уплотнен в картере сальником (30).
Двухгребневый ролик (10) установлен на оси (11), закрепленной в головке вала (7) рулевой сошки 2101 на двух игольчатых подшипниках, имеющих распорное кольцо и боковые шайбы подбираемые селективно. Ролик вала сошки 2105 имеет два радиально-упорных шарикоподшипника и не требует боковых шайб. Вал сошки (7) вращается в картере на двух сталебронзовых подшипниках скольжения. Наружный конец его уплотнен сальником (8). Регулировку зацепления ролика (10) с червяком (28) осуществляют регулировочным винтом (4), ввернутым в верхнюю крышку (5), прикрепленную сверху к картеру болтами. Головка винта с регулировочной шайбой входит в паз головки вала сошки с зазором не более 0,05мм. После выполнения регулировки винт закрепляют контргайкой с шайбой. В верхней крышке имеется отверстие для заливки в картер трансмиссионного масла (“Омскоил Транс П” SAE 80W-85 по API типа GL-4/5 ТУ 38.301-19-106-98 в количестве 180 гр.), завернутое пробкой с конической резьбой.
Картер (6) рулевого механизма фланцем крепится тремя болтами к левому лонжерону основания кузова. Головки двух нижних болтов служат одновременно ограничителем угла поворота сошки (9). Наибольший поворот управляемых колес ограничивается упором двух выступов, имеющихся на рулевой сошке (9), в головки нижних болтов, крепящих картер рулевого механизма. С наружным концом вала (7) соединяется на шлицах рулевая сошка (9), закрепляемая гайкой с гроверной шайбой. Данное шлицевое соединение имеет сдвоенный шлиц и соответствующую сдвоенную впадину, что обеспечивает правильную ориентацию сошки относительно оси ролика.
Рулевая сошка (9) средним ушком соединена шарнирно с левым концом стальной кованной поперечной тяги (18). Правый конец ее шарнирно соединен с маятниковым рычагом (14), который закреплен самоконтрящейся гайкой на оси (19), установленной в двух пластмассовых втулках (21) и кронштейне (20), отлитом из алюминиевого сплава. Кронштейн крепится на правом лонжероне основания кузова.
Ось (19) закреплена во втулках при помощи двух упорных шайб и шплинтуемой корончатой гайки. Под шайбы поставлены уплотнительные резиновые кольца, которые обеспечивают герметичность узла. Внутренняя полость кронштейна (20) в процессе сборки узла при помощи боковых тяг (17), с поворотными рычагами (15), закрепленными болтами на поворотных стойках. Каждая боковая тяга состоит из двух кованых наконечников и регулировочной муфты (16), навернутой на концы наконечников, имеющих правую и левую резьбу. Вращением регулировочной муфты изменяют длину тяги с целью регулировки схождения колес.
Муфта (16), имеющая по концам разрезы, закрепляется на наконечниках стяжными хомутами с болтами. Соединения тяг с рычагами выполнено при помощи шаровых шарниров неразборного типа. Каждый шаровой шарнир представляет собой шаровой палец (26), закрепленный коническим хвостовиком при помощи шплинтуемой корончатой гайки в рычаге. Палец установлен в головке (24) тяги на конусном пластмассовом вкладыше (25), обладающем высокими противоизносными свойствами. Вкладыш (25) поджимается к пальцу конической пружиной (23), опирающейся на заглушку (22), завальцованную в головке. Сверху головка закрыта резиновым грязезащитным чехлом (27) с металлической обоймой, напрессованной на выточку головки. Шаровые шарниры при сборке заполняются консистентной смазкой ШРБ-4 ТУ 38-УССР-201-143-77 в количестве 3,0-5,0гр. Под защитные чехлы при сборке так же закладывается смазка ШРБ-4 ТУ 38-УССР-201-143-77 в количестве 5,0-7,0гр.
Неисправности устройства рулевого механизма
Неисправности рулевого управления вместе с неисправностями тормозной системы являются самыми серьезными неисправностями автомобиля. С широким применением на современных легковых автомобилях реечного рулевого механизма перечень неисправностей рулевого управления значительно сократился.
К неисправностям рулевого управления относятся:
- износ передающей пары («шестерня-рейка»);
- нарушение герметичности рулевого механизма;
- износ или разрушение подшипника рулевого вала;
- износ шарнира наконечника рулевой тяги.
Самой распространенной неисправностью рулевого управления является износ шарового шарнира наконечника рулевой тяги .
Основными причинами неисправностей рулевого управления являются:
- низкое качество дорог;
- нарушение правил эксплуатации (изменение периодичности обслуживания, применение некачественной рабочей жидкости и комплектующих);
- неквалифицированное проведение работ по техническому обслуживанию и ремонту системы;
- предельный срок службы системы.
Причиной неисправностей рулевого управления могут также стать различные отклонения от рабочих характеристик колес (давление в шинах, балансировка, степень износа шин, износ ступичного подшипника).
О наступающей неисправности рулевого управления свидетельствуют, как правило, различные внешние признаки , основными из которых являются:
- стуки в рулевом управлении;
- биение на рулевом колесе;
- увеличенный люфт рулевого колеса;
- тугое вращение рулевого колеса;
- шум в усилителе рулевого управления;
- подтекание рабочей жидкости.
К сведению, люфтом называется холостое движение рулевого колеса, т.е. движение, при котором поворот не производится.
Несколько слов о подтекании рабочей жидкости. Подтекание рабочей жидкости в элементах рулевого управления происходит не так явно, как при неисправностях системы охлаждения – лужу под автомобилем вы не увидите. Установить подтекание можно при детальном осмотре системы, при этом неисправный элемент выглядит влажным, специалисты еще говорят – запотевшие.
Возможные неисправности рулевого управления
Источник статьи: http://nsportal.ru/npo-spo/transportnye-sredstva/library/2014/05/07/rulevoe-upravlenie
Рулевое управление автомобиля учебник
1. Назначение рулевого управления.
1. Назначение рулевого управления.
Рулевое управление — совокупность механизмов автомобиля, обеспечивающих его движение в заданном направлении.
Рулевое управление (рис. 187) состоит из рулевого колеса, соединенного валом с рулевым механизмом, и рулевого привода. Иногда в рулевое управление включен усилитель.
Рулевым механизмом называют замедляющую передачу, преобразующую вращение вала рулевого колеса во вращение вала сошки. Этот механизм увеличивает прикладываемое рулевому колесу усилие водителя и облегчает его работу.
Рулевым приводом называют систему тяг и рычагов, осуществляющую в совокупности с рулевым механизмом поворот автомобиля. В результате работы рулевого механизма продольная тяга перемещается сошкой вперед или назад, вызывая этим поворот одного колеса влево или вправо, а рулевая трапеция передает поворачивающий момент на другое колесо. Рулевая трапеция представляет собой шарнирный четырехзвенник, образуемый балкой переднего моста (или картером переднего ведущего моста), поперечной рулевой тягой 1, левым 2 и правым 10 рычагами рулевой трапеции. Последние соединены с поворотными кулаками, на которых насажены управляемые колеса.
Благодаря наличию рулевой трапеции управляемые колеса поворачиваются на разные углы: внутреннее (ближайшее к центру поворота) колесо на больший угол, чем внешнее, что обеспечивает качение колес при повороте без существенного скольжения. Разница в углах поворота определяется величиной угла наклона левого и правого рычагов рулевой трапеции.
Рис. 187 — Рулевое управление автомобиля:
1 — поперечная тяга; 2 — левый рычаг рулевой трапеции; 3
поворотный кулак; 4 — поворотный рычаг; 5 — продольная тяга; 6
сошка; 7 — рулевой механизм; 8 — вал рулевого колеса; 9 — рулевое колесо; 10 — правый рычаг рулевой трапеции.
Рулевой механизм представляет собой или червячную, или винтовую, или кривошипную, или зубчатую передачи, или комбинацию таких передач. Большее распространение получил рулевой механизм в виде червячной передачи с червяком глобоидальной формы. К этому типу относят рулевые механизмы легковых и многих грузовых автомобилей семейства Г АЗ.
Рулевые механизмы с двухгребневым роликом на шарикоподшипниках имеют автомобили УАЗ-469. Рулевым механизмом с трехгребневым роликом снабжены грузовые автомобили ГАЗ-53А, ГАЗ-53-12 и ГАЗ-66. В рулевом механизме автомобиля ГАЗ-53А (рис. 188) рулевое колесо закреплено на верхнем конце вала 10. На противоположном конце вала на шлицы напрессован глобоидальный червяк 13, опирающийся на конические роликоподшипники 12 и 21. В зацеплении с червяком находится трехгребневой ролик 16, посаженный на двух шарикоподшипниках 15 и 20, между которыми помещена распорная втулка 17. Ось 14 ролика закреплена в вильчатом кривошипе 18 вала 7 сошки 8. Картер 19 рулевого механизма прикреплен болтами к левому лонжерону рамы. На верхнем конце рулевого вала расположена кнопка сигнала, провод от которой проходит внутри рулевого вала в трубке 11. Между трубкой и валом установлен сальник 22, поджимаемый пружиной 23. Вал 7 сошки уплотнен сальником 6. Сошка на конических шлицах вала укреплена гайкой 9. Вал имеет сдвоенные шлицы, обеспечивающие правильность установки сошки под необходимым углом. На картере рулевого механизма сделаны выступы, служащие упорами для ролика при поворотах сошки из среднего положения в крайние на угол 450.
Рис. 188 — Рулевой механизм автомобиля Г АЗ-53А:
1 — стопорная шайба; 2 — хвостовик вала сошки; 3 — винт; 4 и 9 — гайки; 5 — штифт; 6 и 22 — сальники; 7 — вал сошки; 8 — сошка; 10 — вал; II — трубка; 12. 15, 20 и 21 — подшипники; 13 — глобоидальный червяк; 14 — ось ролика; 16 — ролик; 17 — распорная втулка; 18 — кривошип; 19 — картер; 23 — пружина; 24 – прокладка.
Осевой зазор подшипников 12 и 21 регулируют изменением числа прокладок 24 под крышкой картера. Зацепление червяка и ролика регулируют, не разбирая рулевой механизм, винтом 3, в паз которого входит хвостовик 2 вала сошки. Оси ролика и червяка лежат в разных плоскостях, поэтому для уменьшения зазора в зацеплении достаточно переместить вал сошки в сторону червяка, ввертывая винт 3. Для фиксирования регулировочного винта служат стопорная шайба 1, штифт 5 и навернутая на винт гайка 4. Аналогичное устройство имеет рулевой механизм автомобиля Г АЗ-24 «Волга».
Другим распространенным типом рулевого механизма является винтовая передача с циркулирующими шариками и зубчатым зацеплением.
Комбинированный рулевой механизм автомобиля МАЗ-5335 (рис. 189) представляет собой винт 12, который проходит внутри гайки-рейки 6, находящейся в зацеплении с зубчатым сектором 7. В винтовые канавки между гайкой 6 и винтом 12 при сборке заложено два ряда шариков. Движение шариков в винтовых канавках ограничено направляющими 13 и 15. Высокая точность деталей механизма обеспечивает легкое и плавное вращение винта в гайке.
Рис. 189 — Рулевой механизм автомобиля МАЗ-5335:
1 — сошка: 2 и 17 — сальники; 3 — упорное кольцо; 4 — подшипник вала сектора; 5 — картер; 6 — гайка-рейка; 7 — зубчатый сектор; 8 — регулировочные прокладки; 9 — болт крепления крышки; 10 — нижняя крышка; II — подшипник винта; 12 — винт; 13 и 15 — направляющие шариков; 14 — шарики: 16 — пробка отверстия для заправки масла; 18 — опорная пластина; 19 — гайка регулировочного винта; 20 — боковая крышка картера: 21 — контргайка, 22 — регулировочный винт.
Сектор 7 рулевого механизма, изготовленный как одно целое с валом сошки, установлен на игольчатых подшипниках 4. Зубья сектора выполнены с переменной по длине толщиной, что позволяет регулировать зазор в зацеплении с рейкой, перемещая в осевом направлении сектор регулировочным винтом 22. Винт в сборе с валом сектора ввертывают в боковую крышку 20 картера и крепят контргайкой 21. Регулировочный винт упирается в опорную пластину 18 и удерживается гайкой 19. Контргайка 21 фиксирует положение винта после регулировки.
Рис. 190 – привод рулевого управления с гидроусилителем.
Для правильной установки сошки на торце вала сектора нанесена метка, которую при сборке совмещают с меткой на сошке. Винт 12 вращается в двух роликоподшипниках 11 и соединяется с рулевым валом карданным шарниром. Привод рулевого управления снабжен гидроусилителем 2 (рис. 190). Картер рулевого механизма закрыт крышками 10 и 20 (см. рис. 189) и уплотнен резиновыми сальниками 2 и 17. Отверстие для заливки масла закрыто пробкой 16.
Рис. 191 – Схема рулевого управления автомобиля ЗИЛ-130.
Рулевое управление автомобиля ЗИЛ-130 (рис. 191) включает рулевой механизм 10 с гидроусилителем рулевого привода, масло к которому подается насосом 1. Движение от рулевого колеса к рулевому механизму передается через два карданных шарнира 8, карданный вал 9 и вал рулевого колеса, проходящего внутри рулевой колонки 5.
Рис. 192 – Рулевой механизм управления автомобиля ЗИЛ-130.
У рулевого механизма автомобиля ЗИЛ-130 (рис. 192) поршень-рейка 5 одновременно является поршнем гидроусилителя и рейкой рулевого механизма, которая находится в зацеплении с зубчатым сектором 29 вала 37 рулевой сошки. Водитель с помощью рулевого колеса через вал и карданную передачу вращает винт 7, по которому на циркулирующих шариках 10 перемещается шариковая гайка 8. Вместе с гайкой вдоль винта перемещается поршень-рейка 5, поворачивающая зубчатый сектор 29 вала сошки. Зазор в зацеплении зубьев рейки и сектора можно регулировать, смещая в осевом направлении вал сошки, так как зубья имеют переменную по длине толщину. В картер 4 рулевого механизма и в отверстие его боковой крышки 30 запрессованы бронзовые втулки 39, в которых вращается вал сошки.
При сборке рулевого механизма вначале в винтовые канавки шариковой гайки 8 и винта 7, в желоба 9 закладывают шарики 10, а затем гайку закрепляют установочными винтами 28, которые раскернивают. Шарики, выкатывающиеся при повороте винта с одного конца гайки, возвращаются к другому ее концу по двум штампованным желобам 9, вставленным в отверстия паза винтовой канавки шариковой гайки 8.
Картер рулевого механизма снизу закрыт крышкой 1. Неподвижные соединения рулевого механизма уплотнены резиновыми кольцами 2, 14, 27 и 31. Резиновый сальник 40, защищенный упорным кольцом 41, уплотняет вал сошки. Винт 7 уплотнен в промежуточной крышке 12 и в поршне-рейке 5, а последний в картере’ 4 чугунными разрезными кольцами 11. Для уплотнения винта в верхней крышке установлен резиновый сальник 24 с упорным 22 и замочным 23 кольцами. Металлические частицы, попадающие в масло, залитое в картер рулевого механизма, улавливаются магнитом пробки 38.
Рис. 193 – Общий вид рулевого управления автомобиля КАМАЗ-5320.
Общий вид рулевого управления автомобиля КамАЗ-5320 представлен на рис. 193. Рулевой механизм автомобиля КамАЗ-5320 (рис. 194) включает угловой редуктор, ведущее 3 и ведомое 4 конические зубчатые колеса которого передают вращение на винт 15, перемещающий гайку 16 и скрепленную с ней поршень-рейку 13, зубья которой входят в зацепление с зубчатым сектором 19 вала рулевой сошки.
К корпусу 23 углового редуктора прикреплен корпус 2 клапана управления. Картер рулевого механизма одновременно является корпусом гидроусилителя.
Рулевой механизм представляет собой или червячную, или винтовую, или кривошипную, или зубчатую передачи, или комбинацию таких передач. Большее распространение получил рулевой механизм в виде червячной передачи с червяком глобоидальной формы. К этому типу относят рулевые механизмы легковых и многих грузовых автомобилей семейства Г АЗ.
Рулевой привод (рис. 195) включает сошку 2, продольную тягу 3, поворотный рычаг 7, левый и правый поворотные кулаки 6 и детали рулевой трапеции. Рулевая трапеция может быть задней или передней, т. е. с поперечной рулевой тягой, расположенной сзади переднего моста или перед ним. Различают цельную (единую, рис. 195, а) трапецию, при меняемую при зависимой подвеске колес, и расчлененную (рис. 195,6), используемую при независимой подвеске. Сошка может качаться по дуге окружности, расположенной в плоскости, параллельной продольной оси автомобиля, или в плоскости, параллельной переднему мосту. В последнем случае продольная тяга отсутствует, а сила от сошки передается через поперечные рулевые тяги поворотным кулакам. Типичным во всех случаях является крепление сошки на валу при помощи конуса, треугольных шлицев и гайки.
Рис. 194 — Рулевой механизм автомобиля КамАЗ-5320:
1 — реактивный плунжер; 2 — корпус клапана управления; 3 — ведущее зубчатое колесо; 4 — ведомое зубчатое колесо; 5, 22 и 29 — стопорные кольца; 6 — втулка; 7 и 31 — упорные кольца; 8 — уплотнительное кольцо; 9 и 15 — винты; 10 — перепускной клапан; 11 и 28 — крышки; 12 — картер; 13 — поршень-рейка; 14 — пробка; 16 и 20 — гайки; 17 — желоб; 18 — шарик; 19 — сектор; 21 — стопорная шайба; 23 — корпус; 24 — упорный подшипник; 25 — плунжер; 26 — золотник; 27 — регулировочный винт; 30 — регулировочная шайба; 32 — зубчатый сектор вала сопки.
При движении автомобиля по неровной дороге на детали рулевого привода (сошку, продольную и поперечную рулевые тяги, рулевые рычаги) действуют большие нагрузки. В связи с этим в рулевой привод вводят пружины для смягчения толчков и устройства для автоматического устранения зазоров, возникающих при изнашивании деталей. Поперечная рулевая тяга представляет собой трубку с левой резьбой на одном конце и правой на другом для навинчивания наконечников крепления шаровых шарниров. Вследствие этого можно изменять расстояние между шарнирами при регулировании схождения управляемых колес.
Рис. 195 — Рулевой привод:
а – задняя и передняя расчлененная трапеция; 2 — сошка; 3 — продольная рулевой трапеции; 5 — поперечная тяга, 6 — поворотный кулак; 7 — поворотный рычаг; 8•- стойка, 9 и 11 — боковые тяги; 12 — средняя тяга.
Рис. 196 – Шарнирное соединение рулевого привода автомобиля ГАЗ-53А.
На автомобиле ГАЗ-53А применены унифицированные шарнирные устройства в наконечниках продольных и поперечных рулевых тяг (рис. 196, а). В продольной тяге в наконечники 6, l1риваренные к трубе 7, установлены сменные вкладыши 14, сухарь 13 и полусферический палец 12, опирающийся на пяту 2. Пяту поджимает коническая пружина 3, опорой которой служит крышка 4, закрепляемая стопорным кольцом 5. С другой стороны наконечника на палец шарнира с небольшим натягом надет резиновый колпак 10, закрепленный обоймой 9 на наконечнике. Стальное кольцо 11, завулканизированное в колпак, обеспечивает его уплотнение при старении резины. Через масленку 1 смазывают шарнир у поперечной тяги наконечники 15 левой и правой резьбой соединены с трубой /7, имеющей на концах соответствующую резьбу и продольные разрезы. После соединения с наконечниками концы трубчатой тяги, имеющие продольные разрезы, стягивают хомутами 16, причем болты крепления хомутов располагают со стороны прорезей.
Один из сухарей 19 (рис. 196, б) шарнирного соединения шарового пальца с продольной рулевой тягой автомобиля ЗИЛ-l30 представляет собой жесткую опору, а другой опирается на пружину 20 с ограничителем 21. Внешний сухарь при жат к шаровому шарниру резьбовой пробкой 18. Пружины в наконечниках продольной рулевой тяги поставлены так, чтобы смягчались удары, передающиеся через тягу в обе стороны. Шарнирное соединение продольной и поперечной тяг автомобиля МАЗ-5335 показано на рис. 196,6.
При независимой подвеске управляемых колес соединение их поворотных кулаков жесткой поперечной тягой нарушило бы возможность независимого перемещения колес; поэтому поперечная рулевая тяга выполнена из двух или трех шарнирно связанных частей, позволяющих колесам перемещаться независимо одно от другого.
Рис. 197 – Схема рулевого привода автомобиля ГАЗ-24 «Волга».
У автомобиля ГАЗ-24 «Волга» задняя рулевая трапеция расчленена (рис. 197) и состоит из боковых тяг 18, поперечной тяги 17, сошки 19, маятникового рычага 14 и рычагов 24 поворотных кулаков. Размеры боковых тяг регулируют при помощи регулировочных трубок 22. Трубка 22 имеет продольный разрез, и после регулировки ее зажимают с двух сторон хомутами 21 при помощи болтов 20. Шарниры тяг с полусферическими пальцами саморегулирующиеся, разборные. Смазочный материал закладывают при сборке на заводе, и регулярного пополнения его не требуется.
Ввиду большой нагрузки на детали рулевого механизма и рулевого привода они подвергаются значительному изнашиванию, что может повлечь за собой появление зазоров в шарнирных соединениях и увеличение свободного хода рулевого колеса, который не должен превышать 250.
ПРАКТИЧЕСКАЯ РАБОТА №1
Тема 1. Система охлаждения
10. Понятие «система охлаждения»;
11. Функции системы охлаждения;
12. Типы систем охлаждения;
13. Основные элементы конструкции системы охлаждения;
14. Принцип работы системы при малом и большом кругах охлаждения.
Вопросы для коллективного обсуждения:
7. Преимущества жидкостной системы охлаждения от воздушной.
8. Применение новых технологий при контроле температуры в системе охлаждения.
9. Использование современных систем управления работой системы охлаждения.
Задания для самостоятельной работы:
7. Конспект четвёртой главы учебника Устройство и эксплуатация автотранспортных средств / В.Л. Роговцев, А.Г. Пузанков и др. – М.,1991.
8. Составление схемы «Принцип работы термостата».
9. Подготовьте реферат на тему «Современные системы управления работой системы охлаждения».
9. Автомобили / А.В. Богатырёв, Ю.К. Есеновский-Лашков, М.Л. Насоновский, В.А. Чернышёв. Под ред. А.В. Богатырёва. – М.: Колос, 2001. – 496 с.
10. Автомобили / В.К. Вахламов, М.Г. Шатров, А.А. Юрчевский. Под ред. А.А. Юрчевского. – М.: Издательский центр «Академия», 2003. – 816 с.
11. Автомобиль: Основы конструкции: Учебник для вузов / Н.Н. Вишняков, В.К. Вакхламов, А.Н. Нарбут и др. – 2-ое изд., перераб. и доп. – М.: Машиностроение, 1986. – 304 с.
12. Устройство и эксплуатация автотранспортных средств / В.Л. Роговцев, А.Г. Пузанков и др. – М.: Транспорт, 1991.
9. Вахламов В.К. Автомобили ВАЗ. М.: Транспорт, 1993. – 192 с.
10. Медведков В.И., Билык С.Г., Гришин Г.А. Автомобили КамАЗ-5320, КамАЗ-4310, Урал-4320. М.: ДОСААФ, 1987. – 372 с.
11. Современные автомобильные технологии / Дж. Дэниэлс. – М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2003. – 223 с.
12. Тапинский А.Н., Горячий Я.В. Автомобили АЗЛК-2141 и –21412. М.: Транспорт, 1992.
ПРАКТИЧЕСКАЯ РАБОТА №2
Тема 2. Система смазки
15. Понятие о трении и виды трения.
16. Функции системы смазки ДВС.
17. Основные элементы системы смазки.
18. Принцип работы систем смазки грузовых и легковых автомобилей.
Вопросы для коллективного обсуждения:
10. Особенности конструкции систем смазки применяемых на грузовых автомобилях.
11. Функциональные свойства современных моторных масел и их состав.
12. Эффективность использования различных присадочных материалов для увеличения срока службы ДВС.
Задания для самостоятельной работы:
10. Конспект главы 12.1. учебника Автомобили / А.В. Богатырёв, Ю.К. Есеновский-Лашков, М.Л. Насоновский, В.А. Чернышёв. Под ред. А.В. Богатырёва. – М.: Колос, 2001. – 496 с. или глава 15.1. учебника Автомобили / В.К. Вахламов, М.Г. Шатров, А.А. Юрчевский. Под ред. А.А. Юрчевского. – М.: Издательский центр «Академия», 2003. – 816 с.
11. Записать и дать расшифровку современных моторных масел по классификации SAE и API .
12. Составить схемы систем смазки легкового и грузового автомобилей (марка автомобилей на выбор).
5. Автомобили / А.В. Богатырёв, Ю.К. Есеновский-Лашков, М.Л. Насоновский, В.А. Чернышёв. Под ред. А.В. Богатырёва. – М.: Колос, 2001. – 496 с.
6. Автомобили / В.К. Вахламов, М.Г. Шатров, А.А. Юрчевский. Под ред. А.А. Юрчевского. – М.: Издательский центр «Академия», 2003. – 816 с.
7. Автомобиль: Основы конструкции: Учебник для вузов / Н.Н. Вишняков, В.К. Вакхламов, А.Н. Нарбут и др. – 2-ое изд., перераб. и доп. – М.: Машиностроение, 1986. – 304 с.
8. Устройство и эксплуатация автотранспортных средств / В.Л. Роговцев, А.Г. Пузанков и др. – М.: Транспорт, 1991.
5. Вахламов В.К. Автомобили ВАЗ. М.: Транспорт, 1993. – 192 с.
6. Медведков В.И., Билык С.Г., Гришин Г.А. Автомобили КамАЗ-5320, КамАЗ-4310, Урал-4320. М.: ДОСААФ, 1987. – 372 с.
7. Современные автомобильные технологии / Дж. Дэниэлс. – М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2003. – 223 с.
8. Тапинский А.Н., Горячий Я.В. Автомобили АЗЛК-2141 и –21412. М.: Транспорт, 1992.
ПРАКТИЧЕСКАЯ РАБОТА №3
Тема 3. Передний управляемый мост
4. Конструкции переднего управляемого моста;
5. Основные элементы переднего управляемого моста;
6. Виды передних управляемых мостов.
Вопросы для коллективного обсуждения:
3. Что представляют собой передние управляемые мосты.
4. Устройство комбинированных мостов.
Задания для самостоятельной работы:
3. Что представляет собой ведущий мост автомобиля.
4. Каково назначение дифференциалов.
5. Автомобили / А.В. Богатырёв, Ю.К. Есеновский-Лашков, М.Л. Насоновский, В.А. Чернышёв. Под ред. А.В. Богатырёва. – М.: Колос, 2001. – 496 с.
6. Автомобили / В.К. Вахламов, М.Г. Шатров, А.А. Юрчевский. Под ред. А.А. Юрчевского. – М.: Издательский центр «Академия», 2003. – 816 с.
7. Автомобиль: Основы конструкции: Учебник для вузов / Н.Н. Вишняков, В.К. Вакхламов, А.Н. Нарбут и др. – 2-ое изд., перераб. и доп. – М.: Машиностроение, 1986. – 304 с.
8. Устройство и эксплуатация автотранспортных средств / В.Л. Роговцев, А.Г. Пузанков и др. – М.: Транспорт, 1991.
5. Вахламов В.К. Автомобили ВАЗ. М.: Транспорт, 1993. – 192 с.
6. Медведков В.И., Билык С.Г., Гришин Г.А. Автомобили КамАЗ-5320, КамАЗ-4310, Урал-4320. М.: ДОСААФ, 1987. – 372 с.
7. Современные автомобильные технологии / Дж. Дэниэлс. – М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2003. – 223 с.
8. Тапинский А.Н., Горячий Я.В. Автомобили АЗЛК-2141 и –21412. М.: Транспорт, 1992.
ПРАКТИЧЕСКАЯ РАБОТА №4
Тема 4. Коробка переменных передач
5. Назначение коробки переменных передач;
6. Основные элементы КПП;
7. Особенности конструкции КПП;
Вопросы для коллективного обсуждения:
3. Что представляют собой ступенчатые коробки передач.
4. Устройство гидромеханических КПП.
Задания для самостоятельной работы:
3. Составьте схему трехвальной КПП.
4. Подготовьте доклад на тему «Дополнительные коробки передач».
5. Автомобили / А.В. Богатырёв, Ю.К. Есеновский-Лашков, М.Л. Насоновский, В.А. Чернышёв. Под ред. А.В. Богатырёва. – М.: Колос, 2001. – 496 с.
6. Автомобили / В.К. Вахламов, М.Г. Шатров, А.А. Юрчевский. Под ред. А.А. Юрчевского. – М.: Издательский центр «Академия», 2003. – 816 с.
7. Автомобиль: Основы конструкции: Учебник для вузов / Н.Н. Вишняков, В.К. Вакхламов, А.Н. Нарбут и др. – 2-ое изд., перераб. и доп. – М.: Машиностроение, 1986. – 304 с.
8. Устройство и эксплуатация автотранспортных средств / В.Л. Роговцев, А.Г. Пузанков и др. – М.: Транспорт, 1991.
5. Вахламов В.К. Автомобили ВАЗ. М.: Транспорт, 1993. – 192 с.
6. Медведков В.И., Билык С.Г., Гришин Г.А. Автомобили КамАЗ-5320, КамАЗ-4310, Урал-4320. М.: ДОСААФ, 1987. – 372 с.
7. Современные автомобильные технологии / Дж. Дэниэлс. – М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2003. – 223 с.
8. Тапинский А.Н., Горячий Я.В. Автомобили АЗЛК-2141 и –21412. М.: Транспорт, 1992.
ПРАКТИЧЕСКАЯ РАБОТА №5
Тема 5. Тормозная система.
4. Назначение и типы тормозных систем;
5. Основные элементы тормозных систем;
6. Принцип работы тормозных систем.
Вопросы для коллективного обсуждения:
3. Конструкции тормозных систем автомобилей.
4. Пневматический тормозной привод.
Задания для самостоятельной работы:
3. Антиблокировочные системы.
4. Как влияет техническое состояние тормозной системы на эксплутационные свойства автомобиля.
4. Автомобили / А.В. Богатырёв, Ю.К. Есеновский-Лашков, М.Л. Насоновский, В.А. Чернышёв. Под ред. А.В. Богатырёва. – М.: Колос, 2001. – 496 с.
5. Автомобили / В.К. Вахламов, М.Г. Шатров, А.А. Юрчевский. Под ред. А.А. Юрчевского. – М.: Издательский центр «Академия», 2003. – 816 с.
6. Автомобиль: Основы конструкции: Учебник для вузов / Н.Н. Вишняков, В.К. Вакхламов, А.Н. Нарбут и др. – 2-ое изд., перераб. и доп. – М.: Машиностроение, 1986. – 304 с.
4. Вахламов В.К. Автомобили ВАЗ. М.: Транспорт, 1993. – 192 с.
5. Медведков В.И., Билык С.Г., Гришин Г.А. Автомобили КамАЗ-5320, КамАЗ-4310, Урал-4320. М.: ДОСААФ, 1987. – 372 с.
6. Современные автомобильные технологии / Дж. Дэниэлс. – М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2003. – 223 с.
Источник статьи: http://zinref.ru/000_uchebniki/05300_transport/023_00_00_ustroistvo_i_konstrukcia_avto_uchebno_metodich/004.htm