- Устройство автомобилей
- Рулевой привод
- Требования к рулевому приводу
- Основные параметры рулевого привода
- Классификация рулевых приводов
- Рулевой привод
- Устройство, виды и принцип работы рулевого механизма
- Функции механизма
- Типы рулевых механизмов
- Червячный рулевой механизм: устройство, принцип работы, преимущества и недостатки
- Реечный рулевой механизм: устройство, принцип работы, преимущества и недостатки
- Винтовой редуктор
- Регулировка устройства
Устройство автомобилей
Рулевой привод
Приводом (силовым приводом) в механике называют совокупность устройств, предназначенных для приведения в действие механизмов и машин. В общем случае силовой привод служит для дистанционного управления исполнительным органом машины, передавая ему усилие, прикладываемое к органам управления.
Рулевой привод обеспечивает кинематическую связь рулевого механизма и управляемых колес. Он должен преобразовывать вращение вала рулевого механизма или поступательное движение рейки во вращение управляемых колес вокруг вертикальной оси для совершения автомобилем маневра.
В рулевой привод входят все детали, передающие усилие от рулевого механизма к управляемым колесам. Иными словами, все, что находится между рулевым механизмом и управляемыми колесами, относится к рулевому приводу.
Обязательным элементом рулевого привода является рулевая трапеция ( рис. 2 ), обеспечивающая поворот управляемых колес на различные углы.
Элементы рулевого управления автомобиля представлены на рис. 3 здесь (страница откроется в отдельном окне браузера). Воздействие на рулевую трапецию осуществляется механическим приводом, состоящим из сошки 11, продольной рулевой тяги 10 и поворотных рычагов 7.
Требования к рулевому приводу
К рулевому приводу предъявляют следующие требования:
- обеспечение правильного соотношения углов поворота управляемых колес;
- исключение или уменьшение автоколебаний управляемых колес;
- исключение самопроизвольного поворота управляемых колес при колебании автомобиля на подвеске.
Самопроизвольный поворот («рыскание») управляемых колес может иметь место из-за несогласованности кинематики перемещения подвески и продольной рулевой тяги. При расположении рулевого механизма, как показано на рис. 1, б , вертикальное перемещение передней оси неизбежно приведет к продольному перемещению тяги и повороту колес. Значительно лучше кинематическое согласование достигается при компоновке рулевого управления перед передней осью ( рис. 1, а ).
Одно из требований безопасности – отсутствие зазоров в шарнирах привода. По способу устранения зазора шарниры привода могут быть саморегулируемые, с периодической ручной регулировкой и нерегулируемые.
Саморегулируемые шарниры не требуют регулировок в процессе эксплуатации – появляющийся в результате изнашивания деталей зазор устраняется поджиманием сухарей к головке рулевого пальца с помощью пружины.
Периодически регулируемые шарниры имеют в конструкции специальную резьбовую пробку, затяжка которой устраняет зазоры между деталями.
Нерегулируемые шарниры используют на автомобилях, колеса которых поворачиваются только вокруг вертикальной оси. Эти шарниры проще по конструкции и дешевле в изготовлении, но менее долговечны.
Кроме того, в конструкциях рулевых приводов легковых автомобилей широко применяются нерегулируемые шарниры с вкладышами из синтетических материалов, хорошо противостоящих изнашиванию и обладающих низким коэффициентом трения.
Основные параметры рулевого привода
Основным оценочным параметром рулевого привода являются общее угловое передаточное число Uрп рулевого привода и КПД рулевого привода.
Общим угловым передаточным числом (кинематическим передаточным числом рулевого привода) называют отношение углового перемещения сошки к среднему угловому перемещению поворотных цапф управляемых колес.
Под силовым передаточным числом привода понимают отношение суммарного момента на поворотных цапфах всех управляемых колес к моменту на рулевой сошке.
КПД рулевого привода оценивает потери мощности в шарнирах рулевых тяг и шкворневых устройств управляемых колес.
Для автомобилей с передним управляемым мостом – потери в шкворнях составляют 40…50 %, в шарнирах рулевых тяг – 10…15 %. КПД рулевого привода (0,92…0,95) определяется как отношение силового передаточного числа к кинематическому.
Общий КПД рулевого управления определяется как произведение КПД рулевого механизма на КПД привода. Для современных автомобилей общий КПД рулевого управления может составлять 0,7…0,85.
Классификация рулевых приводов
Рулевые приводы различаются по следующим конструктивным признакам и свойствам:
— по взаимному расположению рулевого колеса и рулевого вала – с раздельным или совмещенным расположением.
При раздельном расположении рулевого вала и рулевого колеса их соединяют карданным валом, резиновой полумуфтой, сильфонным или перфорированным патрубком. При аварии такая конструкция обеспечивает травмобезопасность, так как при прямом ударе вал складывается и не перемещает рулевое колесо.
Кроме того, раздельное расположение вала и руля позволяет решить и некоторые другие технические задачи.
— по расположению рулевой трапеции – с передним или задним расположением относительно оси управляемых колес.
Варианты расположения и устройства рулевой трапеции при проектировании рулевого управления автомобиля определяются компоновочными возможностями. Схемы основных типов рулевых трапеций представлены на рис. 2 .
— по конструкции поперечной тяги – с цельной или разрезной тягой.
При применении зависимой подвески и неразрезной балке моста поперечная тяга для увеличения жесткости рулевого управления выполняется сплошной, при этом она может располагаться как перед балкой моста, так и за ней ( рис. 2, а, б ).
В случае применения неразрезной поперечной тяги при независимой подвеске вертикальное перемещение одного из колес вызвало бы поворот другого колеса. Чтобы избежать этого, поперечную тягу делают разрезной, из нескольких звеньев ( рис. 2, в ).
На переднеприводных автомобилях с реечным рулевым механизмом рулевая трапеция состоит из двух тяг, непосредственно связанных с рейкой ( рис. 2, г ).
Изменение длины поперечной тяги позволяет осуществлять регулировку схождения управляемых колес.
— по наличию усилителя – простой механический привод или с использованием усилителя.
Конструкция элементов рулевого привода должна быть достаточно жесткой для надежной и правильной передачи усилий и в тоже время позволять изменять их взаимное положение. Для обеспечения такой передачи соединение деталей рулевого привода осуществляется с помощью шаровых шарниров.
Сошка связывает выходной вал рулевого механизма с продольной тягой. Ее изготовляют методом ковки с переменным эллиптическим сечением по длине, что является наиболее рациональным для выполнения условий прочности и жесткости.
Сошку соединяют с валом шлицевым соединением треугольного профиля и фиксируют гайкой. Для беззазорной посадки отверстие в сошке и конец вала выполняют коническими, а для правильной установки сошки на валу предусмотрены соответствующие метки или несимметрично расположенные шлицы.
Продольную тягу 11 рулевого привода ( рис. 3 ) делают трубчатой с утолщением по краям для монтажа шарниров. Каждый шарнир состоит из пальца 13, вкладышей 12 и 14, охватывающих сферическими поверхностями шаровую головку пальца, пружины 15 и резьбовой крышки 16.
Пружина постоянно прижимает вкладыши к шаровой головке пальца, устраняя зазоры, возникающие в результате изнашивания.
Поперечная рулевая тяга 10 также имеет трубчатое сечение. Шаровые шарниры размещаются в наконечниках 8, навинченных на концы тяги. Положение наконечников фиксируется стяжными болтами.
Наворачивая или свинчивая наконечники, можно изменять длину поперечной тяги при регулировке схождения колес. Так как резьба, нарезанная на концах тяги имеет разное направление, то изменение длины тяги можно осуществлять вращением самой тяги.
В корпусе наконечника установлен шаровой палец 5, к головке которого пружина 3 прижимает вкладыш 4, а своим вторым концом опирается на крышку 1, которая через прокладку 2 крепится болтами к корпусу наконечника.
Выход пальца из корпуса уплотняется защитной накладкой 9. Зазоры в шарнире при изнашивании устраняются путем постоянного прижатия вкладышей к шаровой головке пальца пружиной.
Такие наконечники не требуют регулировки.
Все шаровые соединения имеют пресс-масленки для периодического смазывания.
Шарнирные соединения механических рулевых приводов являются наиболее ответственными деталями с точки зрения безопасности движения. Они могут иметь пальцы сферической, полусферической или цилиндрической формы и вкладыши, изготовленные из различных материалов.
Наряду с шарнирным соединением, представленным на рис. 3 , где постоянная плотность сопряжения головки шарового пальца с вкладышами поддерживается упругим воздействием пружины, действующим вдоль оси пальца, существуют шарниры с усилием вдоль оси тяги (рис. 4,а,б,в ). Такие шарниры просты в изготовлении и получили распространение на грузовых автомобилях средней и большой грузоподъемности.
Однако такая конструкция имеет существенный недостаток: усилие пружины 3 должно быть значительно больше максимального усилия, которое может действовать вдоль оси тяги при движении автомобиля. Поэтому рабочие поверхности шаровых пальцев 1 и вкладышей 2 постоянно нагружены усилиями со стороны пружин. Это отрицательно сказывается на долговечности деталей.
Унифицированные шарниры неразборной конструкции ( рис. 4,г,д,е ) снабжены вкладышами, изготовленными из полиуретана или нейлона, пропитанного специальным составом. Наличие прорези во вкладыше обеспечивает сборку и беззазорное соединение сопряженных поверхностей с помощью пружин. Для исключения выхода пальцев из тяги при значительных деформациях или поломках пружин в шарнирах устанавливают ограничители.
Эти шарниры не требуют регулировок и смазочного материала.
Детали рулевого привода изготавливают из сталей 20, 30, 35; пальцы шарниров – из сталей 12ХН3А, 18ХГТ и 15ХН; наконечники рулевых тяг, рычаги и сошку выковывают из сталей 35, 40, 45, 30Х, 35Х, 40Х, 38ХГМ, 40ХНМА.
Диаметр рулевого колес нормирован. Он составляет для легковых и грузовых автомобилей малой грузоподъемности 380…425 мм, а для грузовых автомобилей и автобусов большой вместимости- 440…550 мм.
Максимальный угол поворота рулевого колеса зависит от типа автомобиля и находится в пределах ±540…1080˚ (1,5…3 оборота).
Источник статьи: http://k-a-t.ru/avto_shassi_2/6_rul_privod/
Рулевой привод
Рулевой привод ⭐ — это устройство предназначенное для передачи от рулевого механизма усилия, необходимого для поворота управляемых колес обоих бортов автомобиля.
Рулевой привод обеспечивает поворот колес на разные углы и тем самым — их качение без проскальзывания по концентрическим окружностям с общим центром, являющимся центром поворота автомобиля.
Движение автомобиля не сопровождается боковым скольжением его колес, если траектории качения всех колес имеют единый центр поворота.
Рулевой привод автомобиля состоит из рулевых рычагов и рулевых тяг, образующих рулевую трапецию, которая и обеспечивает одновременный поворот управляемых колес на неодинаковые углы.
Правильное соотношение углов поворота управляемых колес устанавливается при повороте автомобиля за счет разных длин рычагов, входящих в рулевую трапецию.
Различают цельную (единую) трапецию, применяемую при наличии зависимой подвески управляемых колес, и расчлененную, используемую в сочетании независимой подвеской. В первом случае левое и правое управляемые колеса 3 связаны жесткой балкой 7 управляемого моста. Сошка 11 шарнирно соединена с продольной тягой 10, жестко связанной с левым поворотным кулаком, рычаг 9 которого, в свою очередь, шарнирно соединен с поперечной тягой 8. Во втором случае сошка 5 шарнирно связана с левым концом средней поперечной тяги б. Правый конец тяги также шарнирно соединен с маятниковым рычагом 7, имеющим опору на раме (кузове) автомобиля и в точности имитирующим перемещение сошки в процессе поворота. Тяга 6 шарнирно связана с боковыми тягами 4, соединенными посредством поворотных рычагов 1 трапеции с поворотными кулаками, на оси которых установлены управляемые колеса.
Рис. Рулевой привод с цельной трапецией:
1 — рулевая колонка; 2 — рулевой вал; 3 — управляемые колеса; 4,9 — рычаги левого поворотного кулака; 5 — правый поворотный кулак; 6 — рычаг правого поворотного кулака; 7 — балка управляемого моста; 8 — поперечная рулевая тяга; 10 — продольная тяга; 11 — сошка; 12 — червячный механизм; 13 — рулевое колесо; стрелками показано направление движения элементов рулевого управления
Рис. Расчлененная трапеция:
1 — поворотные рычага; 2 — наконечник; 3 — регулировочные втулки; 4 — боковые тяги; 5 — сошка; 6 — средняя поперечная тяга; 7 — маятниковый рычаг; 8 — стяжные болты; 9 — хомутик втулки; 10 — шаровой палец; 11 — вкладыш; 12 — пресс-масленка; 13 — заглушка; 14 — пружина; 15 — опорная пята; 16 — уплотнитель
В процессе эксплуатации автомобиля на детали рулевой трапеции (сошка, тяги) действуют значительные нагрузки, вызывающие износ этих деталей. Поэтому шарнирные соединения деталей трапеции обычно выполняют шаровыми и саморегулирующимися. Саморегулирование заключается в автоматическом устранении зазоров, возникающих по мере изнашивания деталей. Излишние зазоры в приводе вызывают увеличение свободного хода рулевого колеса.
Шаровой наконечник сошки зажат между двумя полусферическими вкладышами и регулировочной пробкой для устранения зазора в соединении по мере изнашивания деталей.
Шаровые пальцы защищены от попадания грязи специальным резиновым уплотнителем 16. Поверхность вкладыша (сухарей) 11 прижимается к шаровой поверхности пальца пружиной 14. При сборке шарнира поджатие пружины к опорной пяте 15 обеспечивается установкой заглушки 13. В некоторых случаях применяют винтовые пробки, которые после регулирования зазоров в шарнире шплинтуются в наконечнике. Трущиеся поверхности шарниров обычно смазываются консистентной смазкой с помощью специальных пресс-масленок 12.
Источник статьи: http://ustroistvo-avtomobilya.ru/rulevoe-upravlenie/rulevoj-privod/
Устройство, виды и принцип работы рулевого механизма
Основой рулевого управления любого автомобиля является рулевой механизм. Он предназначен для преобразования вращательных движений рулевого колеса в возвратно-поступательные движения рулевого привода. Другими словами, данное устройство превращает повороты руля в нужные перемещения тяг и поворот управляемых колес. Основным параметром механизма является передаточное число. А само устройство, по сути, представляет собой редуктор, т.е. механическую передачу.
Функции механизма
Основными функциями устройства являются:
- преобразование усилия от руля (рулевого колеса);
- передача полученного усилия на рулевой привод.
Типы рулевых механизмов
Устройство рулевого механизма различается в зависимости от способа преобразования крутящего момента. По этому параметру выделяют червячный и реечный виды механизмов. Существует еще винтовой тип, принцип работы которого схож с червячной передачей, но он имеет больший КПД и реализует большее усилие.
Червячный рулевой механизм: устройство, принцип работы, преимущества и недостатки
Этот рулевой механизм является одним из «устаревших» устройств. Им оснащены практически все модели отечественной «классики». Механизм применяется на автомобилях с повышенной проходимостью с зависимой подвеской управляемых колес, а также в легких грузовых автомобилях и автобусах.
Схема червячного редуктора
Конструктивно устройство состоит из следующих элементов:
- рулевой вал;
- передача «червяк-ролик»;
- картер;
- рулевая сошка.
Пара «червяк-ролик» находится в постоянном зацеплении. Глобоидальный червяк представляет собой нижнюю часть рулевого вала, а ролик закреплен на валу сошки. При вращении руля ролик перемещается по зубьям червяка, благодаря чему вал рулевой сошки также поворачивается. Результатом такого взаимодействия является передача поступательных движений на привод и колеса.
Рулевой механизм червячного типа имеет следующие преимущества:
- возможность поворота колес на больший угол;
- гашение ударов от дорожных неровностей;
- передача больших усилий;
- обеспечение лучшей маневренности машины.
Изготовление конструкции достаточно сложное и дорогое – в этом главный ее минус. Рулевое управление с таким механизмом состоит из множества соединений, периодическая регулировка которых просто необходима. В противном случае придется заменять поврежденные элементы.
Реечный рулевой механизм: устройство, принцип работы, преимущества и недостатки
Рулевой механизм реечного типа считается более современным и удобным. В отличие от предыдущего узла, это устройство применимо на транспортных средствах с независимой подвеской управляемых колес.
В реечный рулевой механизм входят следующие элементы:
- корпус механизма;
- передача «шестерня-рейка».
Шестерня устанавливается на рулевом валу и находится в постоянном зацеплении с рейкой. В процессе вращения рулевого колеса рейка перемещается в горизонтальной плоскости. В результате соединенные с ней тяги рулевого привода также перемещаются и приводят в движение управляемые колеса.
Механизм «шестерня-рейка» отличается простотой конструкции и высоким КПД. К ее преимуществам также можно отнести:
- меньшее количество шарниров и тяг;
- компактность и невысокая цена;
- надежность и простота конструкции.
С другой стороны, редуктор этого типа чувствителен к ударам от неровностей дороги – любой толчок от колес передастся на руль.
Винтовой редуктор
Особенностью этого механизма является соединение с помощью шариков винта и гайки. За счет чего наблюдается меньшее трение и износ элементов. Механизм состоит из следующих элементов:
- вал рулевого колеса с винтом
- гайка, перемещаемая по винту
- зубчатая рейка, нарезанная на гайке
- зубчатый сектор, с которым соединена рейка
- рулевая сошка
Винтовой рулевой механизм применяется в автобусах, тяжелых грузовых автомобилях и в некоторых легковых автомобилях представительского класса.
Регулировка устройства
Регулировка рулевого механизма применяется для компенсации зазоров в механизмах «червяк-ролик» и «шестерня-рейка». В процессе эксплуатации в данных механизмах может появиться люфт, который может привести к быстрому износу элементов. Регулировать рулевой механизм необходимо только в соответствии с рекомендациями производителя и на специализированных СТО. Избыточное “зажатие” механизма может привести к его заклиниванию при повороте руля в крайние положения, что чревато потерей управления автомобилем с соответствующими последствиями.
Источник статьи: http://techautoport.ru/hodovaya-chast/rulevoe-upravlenie/rulevoy-mehanizm.html