С какой скоростью вращается генератор автомобиля

Автомобильный генератор и его особенности

В рамках данной статьи поговорим об особенностях принципиального устройства автомобильных генераторов. Для владельцев автомобилей, разбирающихся в предмете, данная статья не будет интересна. Но для тех, кому автомобильные генераторы интересны в прикладном плане, эта информация может оказаться полезной.

В современных автомобилях в качестве генераторов применяются синхронные трёхфазные электрические машины переменного тока, у которых в выпрямителе применяется схема Ларионова.

Чтобы генератор после пуска двигателя отдавал ток в нагрузку, необходимо обеспечить питание обмотке возбуждения. Это происходит при повороте ключа замка зажигания в рабочее положение.

Ток в обмотке возбуждения управляется стабилизатором напряжения, который может быть выполнен в виде отдельного узла или встроен в щёточный узел генератора. В подавляющем большинстве современных генераторов стабилизатор напряжения (СН) питается от отдельной секции выпрямителя.

Среди прочих генераторов переменного тока, генератор автомобильный выделяется несколькими особенностями. Прежде всего, автомобильный генератор хотя и выдает постоянный ток, на деле он является генератором тока переменного, который затем выпрямляется диодным мостом и превращается в постоянный ток.

Такое решение весьма популярно, тот же генератор переменного тока из асинхронного двигателя можно превратить в генератор постоянного тока, достаточно лишь добавить диодный выпрямитель.

Читайте также:  Покраска автомобиля своими руками нанесение лака

Генераторы с выпрямлением переменного тока называются вентильными генераторами постоянного тока. К таким генераторам и относится автомобильный генератор.

Выходное напряжение автомобильного генератора постоянно

Одна из отличительных черт автомобильного генератора — напряжение на его выходных клеммах поддерживается в узком диапазоне при помощи специального стабилизатора, называемого регулятором напряжения. Но и это не является чем-то исключительным для электрических машин.

Стабилизаторы напряжения можно встретить в комплектации многих источников бесперебойного питания, в том числе среди тех, которые берут энергию для своих аккумуляторов от механических генераторов тех же домашних ГЭС или от солнечных батарей.

Главная же отличительная черта именно автомобильного генератора — то что он получает механическую энергию через ремень от коленвала двигателя внутреннего сгорания, у которого частота вращения совсем не постоянна, зависит она от режима работы транспортного средства в текущий момент, и никак не связана с нуждами потребителей постоянного тока.

Вот и получается, что задача генератора и его электроники — суметь заряжать автомобильный аккумулятор и питать потребители стабилизированным напряжением, независимо от того, каковы текущие обороты якоря — напряжение обязано оставаться в узком коридоре в районе 14 вольт.

Если напряжение по какой-то причине выйдет за пределы диапазона стабилизации, зарядный ток аккумулятора может стать чрезвычайно высоким, и электролит попросту выкипит.

Такое явление не является чем-то невиданным, многие автолюбители сталкивались с ним, когда регулятор напряжения на генераторе выходил вдруг из строя — электролит в аккумуляторе в таком случае быстро выкипает.

Если же напряжение с генератора окажется слишком низким, то аккумулятор преждевременно разрядится. С данной проблемой также сталкивались многие автомобилисты.

Итак, стабильное выходное напряжение — обязательное условие правильной работы автомобильного генератора. Но этого достичь не так уж и просто. Диапазон варьирования частоты вращения ротора генератора в автомобиле довольно широк. На холостых оборотах это порядка 800 — 1200 оборотов в минуту, а в момент хорошего разгона — до 5000 и даже до 6000 оборотов в минуту, в зависимости от того, что это за автомобиль.

Токоскоростная характеристика автомобильного генератора

Таким образом, поскольку напряжение автомобильного генератора поддерживается почти постоянным благодаря регулятору напряжения, он имеет собственную токоскоростную характеристику (ТСХ), ведь при разных скоростях вращения ротора, ток нагрузки получается разным. Напряжение постоянное, но чем выше обороты — тем выше ток, и чем ниже обороты — тем ток с силовых клемм генератора меньше.

Примечательно кстати то, что автомобильный генератор имеет предел по току, и поэтому обладает свойством самоограничения. Это значит, что когда ток достигнет определенной предельной величины, как бы ни повышались обороты дальше, ток нарастать уже больше не будет, просто не сможет.

Токоскоростаня характеристика (ТСХ) автомобильного генератора снимается по методике, принятой в качестве международного стандарта. Она (характеристика) снимается в процессе испытания работы генератора на стенде в паре с полностью заряженным аккумулятором такой номинальной емкости, которая в ампер-часах составляет половину (50%) номинального тока генератора в амперах. На характеристике находят характерные важные точки: n0, nrg, nн, nmax.

Начальная частота вращения ротора n0 – это теоретическая частота вращения ротора без нагрузки. Так как характеристику начинают снимать начиная с тока в 2 ампера, то эту точку находят путем экстраполяции характеристики до пересечения с горизонтальной осью оборотов.

Минимальную рабочую частоту генератора nrg принимают соответствующей оборотам коленвала на холостом ходу. Это примерно от 1500 до 1800 оборотов в минуту для ротора генератора. Ток при данной частоте, как правило, составляет от 40 до 50% от номинала для данного генератора. Этого тока должно хватить для питания минимального количество жизненно важных потребителей в автомобиле.

Номинальные обороты ротора генератора nн — это как раз та частота, при которой генерируется номинальный ток Iн, он не должен быть меньше номинала по паспорту.

Максимальные обороты ротора генератора nmax – это та частота вращения ротора, при которой генератором отдается максимальный ток, величина которого не сильно отличается от номинала испытываемого генератора.

Для генераторов отечественного производства раньше было принято указывать номинальный ток при 5000 оборотах в минуту. Указывалась и расчетная частота nр для расчетного тока генератора Iр, равного двум третьим от номинального тока. Этот расчетный режим соответствовал такому режиму работы генератора, когда его узлы не сильно нагревались. Все характеристики снимались при напряжении 14 или 13 вольт.

Самовозбуждение автомобильного генератора и КПД

Автомобильный генератор обязан самовозбуждаться на частоте вращения его ротора ниже частоты при оборотах коленвала на холостом ходу. Проверка проводится на стенде, где самовозбуждение должно произойти при подключении генератора к аккумулятору с контрольной лампой.

Возможности автомобильного генератора с энергетической точки зрения характеризуются величиной его КПД. Чем больше КПД — тем меньшая мощность отбирается от двигателя внутреннего сгорания для получения той же полезной отдачи в форме электрической мощности.

КПД генератора зависит главным образом от конструктивных особенностей конкретного изделия: какова толщина пластин в статоре и толщина набора, насколько качественно пластины друг от друга изолированы (насколько малы токи Фуко), каково сопротивление обмоток статора и ротора, насколько широки контактные кольца ротора, каково качество щеток и подшипников? И т. д.

Но одно сказать можно точно — чем выше номинальная мощность генератора — тем выше и КПД. Между тем, типичный КПД автомобильных генераторов, да и вообще вентильных генераторов, не превышает 60%.

Главный показатель возможностей генератора — это его токоскоростная характеристика, она показывает наглядно, чего можно ожидать от того или иного генератора, на что можно рассчитывать. По характерным точкам составляют таблицу для генератора.

Для примера приведем таблицу характеристик генераторов отечественного производства:

Диапазон выходного напряжения на разных оборотах и в зависимости от температуры и нагрузки, отражает возможности регулятора напряжения автомобильного генератора.

Источник статьи: http://electrik.info/device/1283-avtomobilnyy-generator-i-ego-osobennosti.html

Справочник

Характеристики автомобильных генераторов

Способность генераторной установки обеспечивать потребителей электроэнергией на различных режимах работы двигателя определяется его токоскоростной характеристикой (ТСХ) — зависимостью наибольшей силы тока, отдаваемого генератором, от частоты вращения ротора при постоянной величине напряжения на силовых выводах. На рис. 1 представлена токоскоростная характеристика генератора.

Рис. 1. Токоскоростная характеристика генераторных установок.

На графике имеются следующие характерные точки:

n0 — начальная частота вращения ротора без нагрузки, при которой генератор начинает отдавать ток;

Iхд — ток отдачи генератора при частоте вращения, соответствующей минимальным устойчивым оборотам холостого хода двигателя.

На современных генератоpax ток, отдаваемый в этом режиме, составляет 40-50% от номинального;

Idm — максимальный (номинальный) ток отдачи при частоте вращения ротора 5000 мин»‘ (6000 мин» для современных генераторов).

Различают ТСХ, определенные: — при самовозбуждении (цепь обмотки возбуждения питается от собственного генератора);

— при независимом возбуждении (цепь обмотки возбуждения питается от постороннего источника);

— для генераторной установки (регулятор напряжения включен в схему);

— для генератора (регулятор напряжения отключен);

— в холодном состоянии (под холодным понимают такое состояние, при котором температура узлов генератора практически равна температуре окружающего воздуха (25 ±10) °С, поскольку при экспериментальном определении ТСХ генератор нагревается, время эксперимента должно быть минимальным, т. е. не более 1 мин, а повторный эксперимент должен производиться после того, как температура узлов вновь станет равной температуре окружающего воздуха);

— в нагретом состоянии.

В технической документации на генераторы часто указывается не вся ТСХ, а лишь ее отдельные характерные точки (см. рис. 1).

К таким точкам относятся: — начальная частота вращения при холостом ходе n0. Она соответствует заданному напряжению генератора без нагрузки;

— наибольшая сила тока, отдаваемого генератором Idm. (Автомобильные вентильные генераторы обладают самоограничением, т. е. достигнув силы Idm значение которой близко к значению силы тока короткого замыкания, генератор при дальнейшем увеличении частоты вращения не может отдать потребителям тока большего значения. Ток Idm умноженный на номинальное напряжение, определяет номинальную мощность автомобильных генераторов);

— частота вращения npн и сила тока Idн в расчетном режиме. (Точка расчетного режима определяется в месте касания ТСХ касательной, проведенной из начала координат. Приблизительно расчетное значение силы тока может быть определено как 0,67 Idm Расчетному режиму соответствуют максимальный механический момент генератора и в области этого режима наблюдается наибольший нагрев узлов, так как с ростом частоты вращения растет ток генератора и, следовательно, нагрев его узлов, но одновременно возрастает и интенсивность охлаждения генератора вентилятором, расположенным на его валу. При больших частотах вращения над ростом интенсивности нагрева преобладает рост интенсивности охлаждения и нагрев узлов генератора уменьшается.);

— частота вращения nхд и сила тока Iхд в режиме, соответствующем холостому ходу двигателя внутреннего сгорания (ДВС). В этом режиме генератор должен отдавать силу тока, необходимую для питания ряда важнейших потребителей, прежде всего зажигания в карбюраторных ДВС.

Как определить параметры своего генератора: Для отечественных генераторов: На новые модели отечественных двигателей (ВАЗ-2111, 2112, ЗМЗ-406 и др.): устанавливаются генераторы компактной конструкции (94.3701 и др.). Безщеточные (индукторные) генераторы (955.3701 для ВАЗов, Г700А для УАЗов) отличаются от традиционной конструкции тем, что у них на роторе расположены постоянные магниты, а обмотки возбуждения — на статоре (смешанное возбуждение). Это позволило обойтись без щеточного узла (уязвимая часть генератора) и контактных колец. Однако эти генераторы имеют несколько большую массу и более высокий уровень шума.

На щитке генератора обычно указываются его основные параметры:

— номинальное напряжение 14 или 28 В (в зависимости от номинального напряжения системы электрооборудования);

— номинальный ток, за который принимается максимальный ток отдачи генератора.

— Тип, марка генератора

Основной характеристикой генераторной установки является ее токоскоростная характеристика (ТСХ), т. е. зависимость тока, отдаваемого генератором в сеть, от частоты вращения его ротора при постоянной величине напряжения на силовых выводах генератора.

Характеристика эта определяется при работе генераторной установки в комплекте с полностью заряженной аккумуляторной батареей с номинальной емкостью выраженной в А/ч, составляющей не менее 50% номинальной силы тока генератора. Характеристика может определяться в холодном и нагретом состояниях генератора. При этом под холодным состоянием понимается такое, при котором температура всех частей и узлов генератора равна температуре окружающей среды, величина которой должна быть 23±5°С. Температура воздуха определяется в точке на расстоянии 5 см от воздухозаборника генератора. Поскольку генератор во время снятия характеристики нагревается за счет выделяемых в нем потерь мощности, то методически трудно снять ТСХ в холодном состоянии и большинство фирм приводит токоскоростные характеристики генераторов в нагретом состоянии, т. е. в состоянии при котором узлы и детали генератора нагреты в каждой определяемой точке до установившейся величины за счет выделяемых в генераторе потерь мощности при указанной выше температуре охлаждающего воздуха.

Диапазон изменения частоты вращения при снятии характеристики заключен между минимальной частотой, при которой генераторная установка развивает силу тока 2А (около 1000 мин-1) и максимальной. Снятие характеристики осуществляется с интервалом 500 до 4000 мин-1 и 1000 мин-1 при более высоких частотах. Некоторые фирмы приводят токоскоростные характеристики, определенные при номинальном напряжении, т. е. при 14 В, характерном для легковых автомобилей. Однако снять такие характеристики возможно только с регулятором специально перестроенном на высокий уровень поддержания напряжения. Чтобы предотвратить работу регулятора напряжения при снятии токоскоростной характеристики, ее определяют при напряжениях Ut=13,5±0,1 В для 12-вольтовой бортовой системы. Допускается и ускоренный метод определения токоскоростной характеристики, требующий специального автоматизированного стенда, при котором генератор прогревается в течение 30 мин при частоте вращения 3000 мин-1, соответствующей этой частоте, силе тока и указанном выше напряжении. Время снятия характеристики не должно превышать 30 с при постоянно меняющейся частоте вращения.

Токоскоростная характеристика имеет характерные точки, к которым относятся : n0 — начальная частота вращения без нагрузки. Поскольку обычно снятие характеристики начинают с тока нагрузки (около 2А, то эта точка получается экстраполяцией снятой характеристики до пересечения с осью абсцисс.

nL — минимальная рабочая частота вращения, т. е. частота вращения, примерно соответствующая частоте холостого хода двигателя. Условно принимается, nL = 1500 мин-1. Этой частоте соответствует ток IL . Фирма Bosch для «компактных» генераторов приняла nL=1800 мин-1. Обычно IL составляет 40. 50% номинального тока.

nR — номинальная частота вращения, при которой вырабатывается номинальный ток IR. Эта частота вращения принята nR = 6000 мин-1. IR — наименьшая сила тока, который генераторная установка должна выработать при частоте вращения nR.

NМАХ — максимальная частота вращения. При этой частоте вращения генератор вырабатывает максимальную силу тока Imax. Обычно максимальная сила тока мало отличается от номинального IR (не более, чем на 10%).

Производители приводят в своих информационных материалах в основном только характерные точки токоскоростной характеристики. Однако, для генераторных установок легковых автомобилей с достаточной степенью точности можно определить токоскоростную характеристику по известной номинальной величине силы тока IR и характеристике по рис.8, где величины силы тока генератора даны по отношению к ее номинальной величине.

Кроме токоскоростной характеристики генераторную установку характеризует еще и частота самовозбуждения. При работе генератора на автомобиле в комплекте с аккумуляторной батареей генераторная установка должна самовозбуждаться при частоте вращения двигателя меньшей, чем частота вращения его холостого хода. При этом, конечно, в схему должны быть включены лампа контроля работоспособного состояния генераторной установки мощностью, оговоренной для нее фирмой-изготовителем генератора и параллельно ей резисторы, если они предусмотрены схемой.

Другой характеристикой, по которой можно представить энергетические способности генератора, т. е. определить величину мощности, забираемой генератором от двигателя, является величина его коэффициента полезного действия (КПД), определяемого в режимах соответствующих точкам токоскоростной характеристики (рис.8), величина КПД по рис.8 приведена для ориентировки, т.к. она зависит от конструкции генератора — толщины пластин, из которых набран статор, диаметра контактных колец, подшипников, сопротивления обмоток и т. п., но, главным образом, от мощности генератора. Чем генератор мощнее, тем его КПД выше.

Рис.8 Выходные характеристики автомобильных генераторов:

1 — токоскоростная характеристика, 2 — КПД по точкам токоскоростной характеристики

Наконец, генераторную установку характеризует диапазон ее выходного напряжения, при изменении в определенных пределах частоты вращения, силы тока нагрузки и температуры. Обычно в проспектах фирм указывается напряжение между силовым выводом «+» и «массой» генераторной установки в контрольной точке или напряжение настройки регулятора при холодном состоянии генераторной установки частоте вращения 6000 мин-1, нагрузке силой тока 5 А и работе в комплекте с аккумуляторной батареей, а также термокомпенсация — изменение регулируемого напряжения в зависимости от температуры окружающей среды. Термокомпенсация указывается в виде коэффициента, характеризующего изменение напряжения при изменении температуры окружающей среды на

1°С. Как было показано выше, с ростом температуры напряжение генераторной установки уменьшается. Для легковых автомобилей некоторые фирмы предлагают генераторные установки со следующим напряжением настройки регулятора и термокомпенсацией:

Напряжение настройки, В . 14,1±0,1 14,5+0,1

Термокомпенсация, мВ/°С . —7+1,5 —10±2

Привод генераторов

Привод генераторов осуществляется от шкива коленчатого вала ременной передачей. Чем больше диаметр шкива на коленчатом валу и меньше диаметр шкива генератора (отношение диаметров называют передаточным отношением), тем выше обороты генератора, соответственно, он способен отдать потребителям больший ток.

Привод клиновым ремнем не применяется для передаточных отношений больше 1,7-3. Прежде всего это связано с тем, что при малых диаметpax шкивов клиновой ремень усиленно изнашивается.

На современных моделях, как правило, привод осуществляется поликлиновым ремнем. Благодаря большей гибкости он позволяет устанавливать на генераторе шкив малого диаметра и, следовательно, получать более высокие передаточные отношения, то есть использовать высокооборотные генераторы. Натяжение поликлинового ремня осуществляется, как правило, натяжными роликами при неподвижном генераторе.

Крепление генератора

Генераторы крепятся в передней части двигателя болтами на специальных кронштейнах. Крепежные лапы и натяжная проушина генератора находятся на крышках. Если крепление осуществляется двумя лапами, то они расположены на обеих крышках, если лапа одна — она находится на передней крышке. В отверстии задней лапы (если крепежные лапы — две) обычно имеется дистанционная втулка, устраняющая зазор между кронштейном двигателя и посадочным местом лапы.

Регуляторы напряжения

Регуляторы поддерживают напряжение генератора в определенных пределах для оптимальной работы электроприборов, включенных в бортовую сеть автомобиля. Все регуляторы напряжения имеют измерительные элементы, являющиеся датчиками напряжения, и исполнительные элементы, осуществляющие его регулирование.

В вибрационных регуляторах измерительным и исполнительным элементом является электромагнитное реле. У контактно-транзисторных регуляторов электромагнитное реле находится в измерительной части, а электронные элементы — в исполнительной части. Эти два типа регуляторов в настоящее время полностью вытеснены электронными.

Полупроводниковые бесконтактные электронные регуляторы, как правило, встроены в генератор и объединены со щеточным узлом. Они изменяют ток возбуждения путем изменения времени включения обмотки ротора в питающую сеть. Эти регуляторы не подвержены разрегулировке и не требуют никакого обслуживания, кроме контроля надежности контактов.

Регуляторы напряжения обладают свойством термокомпенсации — изменения напряжения, подводимого к аккумуляторной батарее, в зависимости от температуры воздуха в подкапотном пространстве для оптимального заряда АКБ. Чем ниже температура воздуха, тем большее напряжение должно подводиться к батарее и наоборот. Величина термокомпенсации достигает до 0,01 В на 1°С. Некоторые модели выносных регуляторов (2702.3702, РР-132А, 1902.3702 и 131.3702) имеют ступенчатые ручные переключатели уровня напряжения (зима/лето).

Принцип действия регулятора напряжения

В настоящее время все генераторные установки оснащаются полупроводниковыми электронными регуляторами напряжения, как правило встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки — тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить — увеличивается.

Принцип работы электронного регулятора удобно продемонстрировать на достаточно простой схеме регулятора типа ЕЕ 14V3 фирмы Bosch, представленной на рис. 9:

Рис.9 Схема регулятора напряжения EE14V3 фирмы BOSCH:

1 — генератор, 2 — регулятор напряжения, SA — замок зажигания, HL — контрольная лампа на панели приборов.

Чтобы понять работу схемы, следует вспомнить, что, как было показано выше, стабилитрон не пропускает через себя ток при напряжениях, ниже величины напряжения стабилизации. При достижении напряжением этой величины, стабилитрон «пробивается» и по нему начинает протекать ток. Таким образом, стабилитрон в регуляторе является эталоном напряжения с которым сравнивается напряжение генератора. Кроме того известно, что транзисторы пропускают ток между коллектором и эмиттером, т.е. открыты, если в цепи «база — эмиттер» ток протекает, и не пропускают этого тока, т.е. закрыты, если базовый ток прерывается. Напряжение к стабилитрону VD2 подводится от вывода генератора «D+» через делитель напряжения на резисторах R1(R3 и диод VD1, осуществляющий температурную компенсацию. Пока напряжение генератора невелико и напряжение на стабилитроне ниже его напряжения стабилизации, стабилитрон закрыт, через него, а, следовательно, и в базовой цепи транзистора VT1 ток не протекает, транзистор VT1 также закрыт. В этом случае ток через резистор R6 от вывода «D+» поступает в базовую цепь транзистора VT2, который открывается, через его переход эмиттер — коллектор начинает протекать ток в базе транзистора VT3, который также открывается. При этом обмотка возбуждения генератора оказывается подключена к цепи питания через переход эмиттер — коллектор VT3.

Соединение транзисторов VT2 и VT3, при котором их коллекторные выводы объединены, а питание базовой цепи одного транзистора производится от эмиттера другого, называется схемой Дарлингтона. При таком соединении оба транзистора могут рассматриваться как один составной транзистор с большим коэффициентом усиления. Обычно такой транзистор и выполняется на одном кристалле кремния. Если напряжение генератора возросло, например, из-за увеличения частоты вращения его ротора, то возрастает и напряжение на стабилитроне VD2, при достижении этим напряжением величины напряжения стабилизации, стабилитрон VD2 «пробивается», ток через него начинает поступать в базовую цепь транзистора VT1, который открывается и своим переходом эмиттер — коллектор закорачивает вывод базы составного транзистора VT2, VT3 на «массу». Составной транзистор закрывается, разрывая цепь питания обмотки возбуждения. Ток возбуждения спадает, уменьшается напряжение генератора, закрываются стабилитрон VT2, транзистор VT1, открывается составной транзистор VT2,VT3, обмотка возбуждения вновь включается в цепь питания, напряжение генератора возрастает и процесс повторяется. Таким образом регулирование напряжения генератора регулятором осуществляется дискретно через изменение относительного времени включения обмотки возбуждения в цепь питания. При этом ток в обмотке возбуждения изменяется так, как показано на рис.10. Если частота вращения генератора возросла или нагрузка его уменьшилась, время включения обмотки уменьшается, если частота вращения уменьшилась или нагрузка возросла — увеличивается. В схеме регулятора (см. рис.9) имеются элементы, характерные для схем всех применяющихся на автомобилях регуляторов напряжения. Диод VD3 при закрытии составного транзистора VT2,VT3 предотвращает опасные всплески напряжения, возникающие из-за обрыва цепи обмотки возбуждения со значительной индуктивностью. В этом случае ток обмотки возбуждения может замыкаться через этот диод и опасных всплесков напряжения не происходит. Поэтому диод VD3 носит название гасящего. Сопротивление R7 является сопротивлением жесткой обратной связи.

Рис.10. Изменение силы тока в обмотке возбуждения JB по времени t при работе регулятора напряжения: tвкл, tвыкл — соответственно время включения и выключения обмотки возбуждения регулятора напряжения; n1 n2 — частоты вращения ротора генератора, причем n2 больше n1; JB1 и JB2 — средние значения силы тока в обмотке возбуждения

При открытии составного транзистора VT2, VT3 оно оказывается подключенным параллельно сопротивлению R3 делителя напряжения, при этом напряжение на стабилитроне VT2 резко уменьшается, это ускоряет переключение схемы регулятора и повышает частоту этого переключения, что благотворно сказывается на качестве напряжения генераторной установки. Конденсатор С1 является своеобразным фильтром, защищающим регулятор от влияния импульсов напряжения на его входе. Вообще конденсаторы в схеме регулятора либо предотвращают переход этой схемы в колебательный режим и возможность влияния посторонних высокочастотных помех на работу регулятора, либо, ускоряют переключение транзисторов. В последнем случае конденсатор, заряжаясь в один момент времени, разряжается на базовую цепь транзистора в другой момент, ускоряя броском разрядного тока переключение транзистора и, следовательно, снижая его нагрев и потери энергии в нем.

Из рис.9 хорошо видна роль лампы HL контроля работоспособного состояния генераторной установки (лампа контроля заряда на панели приборов автомобиля). При неработающем двигателе автомобиля замыкание контактов выключателя зажигания SA позволяет току от аккумуляторной батареи GA через эту лампу поступать в обмотку возбуждения генератора. Этим обеспечивается первоначальное возбуждение генератора. Лампа при этом горит, сигнализируя, что в цепи обмотки возбуждения нет обрыва. После запуска двигателя, на выводах генератора «D+» и «В+» появляется практически одинаковое напряжение и лампа гаснет. Если генератор при работающем двигателе автомобиля не развивает напряжения, то лампа HL продолжает гореть и в этом режиме, что является сигналом об отказе генератора или обрыве приводного ремня. Введение резистора R в генераторную установку способствует расширению диагностических способностей лампы HL. При наличии этого резистора в случае обрыва цепи обмотки возбуждения при работающем двигателе автомобиля лампа HL загорается. В настоящее время все больше фирм переходит на выпуск генераторных установок без дополнительного выпрямителя обмотки возбуждения. В этом случае в регулятор заводится вывод фазы генератора. При неработающем двигателе автомобиля, напряжение на выводе фазы генератора отсутствует и регулятор напряжения в этом случае переходит в режим, препятствующий разряду аккумуляторной батареи на обмотку возбуждения. Например, при включении выключателя зажигания схема регулятора переводит его выходной транзистор в колебательный режим, при котором ток в обмотке возбуждения невелик и составляет доли ампера. После запуска двигателя сигнал с вывода фазы генератора переводит схему регулятора в нормальный режим работы. Схема регулятора осуществляет в этом случае и управление лампой контроля работоспособного состояния генераторной установки.

Рис.11. Температурная зависимость напряжения, поддерживаемого регулятором EE14V3 фирмы Bosch при частоте вращения 6000 мин-1 и силе тока нагрузки 5А.

Аккумуляторная батарея для своей надежной работы требует, чтобы с понижением температуры электролита, напряжение, подводимое к батарее от генераторной установки, несколько повышалось, а с повышением температуры — уменьшалось. Для автоматизации процесса изменения уровня поддерживаемого напряжения применяется датчик, помещенный в электролит аккумуляторной батареи и включенный в схему регулятора напряжения. Но это удел только продвинутых автомобилей. В простейшем же случае термокомпенсация в регуляторе подобрана таким образом, что в зависимости от температуры поступающего в генератор охлаждающего воздуха напряжение генераторной установки изменяется в заданных пределах. На рис.11 показана температурная зависимость напряжения, поддерживаемая регулятором EE14V3 фирмы Bosch в одном из рабочих режимов. На графике указано также поле допуска на величину этого напряжения. Падающий характер зависимости обеспечивает хороший заряд аккумуляторной батареи при отрицательной температуре и предотвращение усиленного выкипания ее электролита при высокой температуре. По этой же причине на автомобилях, предназначенных специально для эксплуатации в тропиках, устанавливают регуляторы напряжения с заведомо более низким напряжением настройки, чем для умеренного и холодного климатов.

Работа генераторной установки на разных режимах

При пуске двигателя основным потребителем электроэнергии является стартер, сила тока достигает сотен ампер, что вызывает значительное падение напряжения на выводах аккумулятора. В этом режиме потребители электроэнергии питаются только от аккумулятора, который интенсивно разряжается. Сразу после пуска двигателя генератор становится основным источником электроснабжения. Он обеспечивает требуемый ток для заряда аккумулятора и работы электроприборов. После подзарядки аккумулятора разность его напряжения и генератора становится небольшой, что приводит к снижению зарядного тока. Источником электропитания по-прежнему является генератор, а аккумулятор сглаживает пульсации напряжения генератора.

При включении мощных потребителей электроэнергии (например, обогревателя заднего стекла, фар, вентилятора отопителя и т.п.) и небольшой частоте вращения ротора (малые обороты двигателя) суммарный потребляемый ток может быть больше, чем способен отдать генератор. В этом случае нагрузка ляжет на аккумулятор, и он начнет разряжаться, что можно контролировать по показаниям дополнительного индикатора напряжения или вольтметра.

Замена генератора отечественным аналогом. Рекомендации.

Замена одного типа генератора на автомобиле другим всегда возможна, если соблюдаются четыре условия:

— генераторы имеют одинаковые токоскоростные характеристики или по энергетическим показателям характеристики заменяющего генератора не хуже, чем у заменяемого;

— передаточное число от двигателя к генератору одинаково;

— габаритные и присоединительные размеры заменяющего генератора позволяют установить его на двигатель. Следует иметь в виду, что большинство генераторов зарубежных легковых автомобилей имеют однолапное крепление, в то время как отечественные генераторы крепятся на двигателе за две лапы, поэтому замена зарубежного генератора отечественным скорее всего потребует замены кронштейна крепления генератора на двигателе;

— схемы заменяемой и заменяющей генераторной установки идентичны.

Общие рекомендации по выбору автомбильного генератора

При установке аккумуляторной батареи на автомобиль убедитесь в правильной полярности подключения. Ошибка приведет к немедленному выходу из строя выпрямителя генератора, может возникнуть пожар. Такие же последствия возможны при запуске двигателя от внешнего источника тока (прикуривании) при неправильной полярности подключения.

При эксплуатации автомобиля необходимо: — следить за состоянием электропроводки, особенно за чистотой и надежностью соединения контактов проводов, подходящих к генератору, регулятору напряжения. При плохих контактах бортовое напряжение может выйти за допустимые пределы;

— отсоединить все провода от генератора и от аккумулятора при электросварке кузовных деталей автомобиля;

— следить за правильным натяжением ремня генератора. Слабо натянутый ремень не обеспечивает эффективную работу генератора, натянутый слишком сильно приводит к разрушению его подшипников;

— немедленно выяснить причину загорания контрольной лампы генератора.

Недопустимо производить следующие действия: — оставлять автомобиль с подключенным аккумулятором при подозрении на неисправность выпрямителя генератора. Это может привести к полному разряду аккумулятора и даже к возгоранию электропроводки;

— проверять работоспособность генератора замыканием его выводов на «массу» и между собой;

— проверять исправность генератора путем отключения аккумуляторной батареи при работающем двигателе из-за возможности выхода из строя регулятора напряжения, электронных элементов систем впрыска, зажигания, бортового компьютера и т. д.;

— допускать попадание на генератор электролита, «Тосола» и т. д.

Статья Характеристики ных генераторов и BMW: Сброс

Еще статьи по теме BMW: Сброс индикатора сервисного обслуживания кратко. С диагностическим разъемом: Индикатор замены масла Включите зажигание Подсоедините светодиод между выводом «7» диагностического разъема двигателя и массой 84765. Диагностический разъем расположен рядом с левой или правой чашкой подвески или на перегородке Через 3 секунды пять зеленых светодиодов. BMW: Сброс индикатора

Статья Характеристики ных генераторов и Выбор зарядного

Еще статьи по теме Выбор зарядного устройства для аккумулятора автомобиля кратко. Покупка зарядного устройства очень полезное приобретение для вашего гаража или мастерской. Зарядное устройство поможет завести машину или подзарядить разряженный аккумулятор. Существует большое множество зарядных устройстразных размерои форм. Бывают небольшие легкие устройства для. Выбор зарядного устройства

Статья Характеристики ных генераторов и Автомобильные

Еще статьи по теме Автомобильные навигаторы по системе GPS кратко. В последнее время авто производители стали чаще устанавливать навигационные системы, основанные на работе GPS, на новые машины. Это стало возможно благодаря тому, что за последние несколько лет технология навигации значительно улучшилась, а усиливающаяся конкуренция среди производителей. Автомобильные навигаторы по

Статья Характеристики ных генераторов и Условия работы и

Еще статьи по теме Условия работы и тепловая характеристика свечи кратко. Современные поршневые двигатели внутреннего сгорания работают по четырехтактному или двухтактному рабочему циклу. Автомобильные двигатели, за редким исключением, работают по четырехтактному циклу, осуществляемому за два полных оборота коленчатого вала и четыре хода поршня. Двигатели различного. Условия работы и тепловая

Статья Характеристики ных генераторов и Характеристики

Еще статьи по теме Характеристики автомобильных генераторов кратко. Характеристики ных генераторов Способность генераторной установки обеспечивать потребителей электроэнергией на различных режимах работы двигателя определяется его токоскоростной характеристикой ТСХ — зависимостью наибольшей силы тока, отдаваемого генератором, от частоты вращения. Характеристики

Статья Характеристики ных генераторов и Автомобильные

Еще статьи по теме Автомобильные генераторы кратко. Электрооборудование любого включает себя генератор — основной источник электроэнергии. Вместе с регулятором напряжения он называется генераторной установкой. На современные автомобили устанавливаются генераторы переменного тока. Они наибольшей степени отвечают предъявляемым. Автомобильные

Статья Характеристики ных генераторов и Калильное число

Еще статьи по теме Калильное число свечей зажигания кратко. Современные свечи зажигания индивидуально подбираются для различных конструкций двигателя и условий движения. Поэтому нельзя указать такую свечу зажигания, которая будет без проблем функционировать во всех двигателях. Так как камере сгорания различных двигателей температура повышается. Калильное число свечей

Статья Характеристики ных генераторов и Высоковольтные

Еще статьи по теме Высоковольтные автомобильные провода кратко. Назначение высоковольтных проводов, общие сведения Основной задачей высоковольтных проводоявляется передача электрических импульсоот катушки зажигания на свечи. Поэтому они должны: выдерживать высокое напряжение 40 000 В, передавать импульсы с небольшими потерями, обеспечивать. Высоковольтные

Статья Характеристики ных генераторов и Приборы

Еще статьи по теме Приборы самоконтроля. Датчики кратко. Случаются обстоятельства, которых хочется знать о состоянии чуть больше, чем позволяют привычные приборы. Сколько ни гляди на спидометр, он не поможет вовремя распознать прокол заднего колеса вот одна задач, сих пор не решаемых многими производителями. Уже известные решения. Приборы самоконтроля.

Статья Характеристики ных генераторов и Обслуживание и

Еще статьи по теме Обслуживание и зарядка аккумулятора кратко. Назначение аккумуляторной батарей автомобиле известно каждому автолюбителю. Основная функция аккумулятора – запуск двигателя, с этим мы сталкиваемся ежедневно, а вот о другой его функции знают немногие – использование качестве аварийного источника питания, поломке генератора. Для. Обслуживание и зарядка

Статья Характеристики ных генераторов и Выбор

Еще статьи по теме Выбор аккумулятора для автомобиля кратко. Современные аккумуляторы – мощные и «долгоиграющие» изделия, которые, как правило, служат от четырех семи лет. Но рано или поздно практически каждый автовладелец сталкивается с тем, что аккумулятор нужно менять, а значит предстоит выбор аккумулятора для . Чисто теоретически купить. Выбор аккумулятора для

Источник статьи: http://www.230km.ru/stat.php?id=300

Оцените статью