Сила тяги двигателя легкового автомобиля

Тяговая сила и тяговая характеристика автомобиля. Тяговой силой называется отношение крутящего момента на полуосях к радиусу ведущих колес автомобиля

Тяговой силой называется отношение крутящего момента на полуосях к радиусу ведущих колес автомобиля. Это толкающая автомобиль сила, которая передается от ведущих колес к несущей системе (рама, кузов). При увеличении тяговой силы на ведущих колесах автомобиль может развивать большие ускорения, преодолевать более крутые подъемы, буксировать прицепы большей массы и иметь лучшие тягово-скоростные свойства.

Тяговая сила определяется экспериментально при испытаниях автомобиля или расчетным путем с использованием внешней скоростной характеристики двигателя по формуле:

(2.6)

Из выражения (2.6) следует, что максимальное значение тяговой силы ограничено максимальными значениями момента двигателя Меи передаточного числа трансмиссии uт. Тяговая сила ограничена также вследствие действия силы сцепления между ведущими колесами и дорогой.

Изменение тяговой силы на ведущих колесах показывает тяговая характеристика автомобиля – зависимость тяговой силы от скорости движения на различных передачах.

Характер изменения тяговой силы на ведущих колесах зависит от типа коробки передач (рис. 2.3). Механическая ступенчатая коробка передач обеспечивает ступенчатое изменение тяговой силы (рис.2.3,а). Бесступенчатая – плавное (рис. 2.3, б), а гидромеханическая – и плавное, и ступенчатое (рис. 2.3, в).

Читайте также:  Зачем нам нужен автомобиль презентация 1 класс плешаков

В трансмиссии полноприводных автомобилей, тяжелых грузовых автомобилей и автомобилей-тягачей, работающих с прицепами и полуприцепами, кроме основной устанавливают еще и дополнительные коробки передач (делитель, демультипликатор или раздаточную коробку).

Они позволяют улучшить тягово-скоростные свойства, повысить проходимость и топливную экономичность автомобиля.

а б в

Рисунок 2.3 – Тяговые характеристики автомобилей со ступенчатой коробкой передач (а), с бесступенчатой (б) и гидромеханической коробкой передач (в)

Делитель (мультипликатор) представляет собой повышающую коробку передач. Он устанавливается перед основной коробкой передач и увеличивает число ее передач в 2 раза. Обычно он имеет две передачи: прямую с передаточным числом u = 1и повышающую с (u 1).

Раздаточная коробка представляет собой понижающую коробку передач. Она устанавливается в трансмиссии полноприводных автомобилей и увеличивает передаточные числа и количество передач коробки передач.

У автомобилей со всеми ведущими колесами раздаточная коробка выполняет функции демультипликатора.

Источник статьи: http://helpiks.org/7-20696.html

Как найти силу тяги

Что такое сила тяги

Сила тяги — сила, прикладываемая к телу для поддержания его в постоянном движении.

Действие силы тяги

Множество сил, действующих на движущийся объект, для упрощения вычислений делят на две группы: силу тяги и силы сопротивления.

Её прекращение

Когда действие силы тяги прекращается, движущееся тело замедляется и постепенно останавливается, так как на него воздействуют силы, мешающие продолжать двигаться, например, трение.

1 закон Ньютона о действии

Согласно этому закону в формулировке самого Ньютона, любое тело остается в покое или равномерно движется по прямой, пока на него не воздействуют силы, заставляющие его изменить это состояние.

В современной физике в формулировку внесены уточнения:

  • закон применим только в системах отсчета, называемых инерциальными;
  • тело может вращаться на месте, не находясь под воздействием внешних сил, поэтому вместо термина «тело» следует использовать термин «материальная точка».

Чтобы переместить неподвижный предмет, на него должна воздействовать некая сила. Чтобы изменить скорость движения предмета, также необходимо воздействие силы, замедляющей его или ускоряющей. Так как предметы обладают разной массой и соответственно разной инертностью, силы, достаточные для эффективного воздействия, тоже будут различаться.

Состояние ускорения после воздействия силы тяги

Когда движение равномерное, сила тяги и сила трения совершают одинаковую работу, уравновешивая друг друга. Воздействие силы на тело в направлении движения придает ему ускорение. Если направить ту же силу в противоположном направлении, она замедлит движение тела, что можно назвать отрицательным ускорением.

Формулы для определения силы тяги

Согласно второму закону Ньютона, сумма сил, воздействующих на движущееся тело, равна массе \(m\) , умноженной на ускорение \(a\) . Универсальной формулы, подходящей для любого сочетания сил, не существует. Чаще всего силу тяги находят с помощью общей формулы \( F_т-\;F_<с>=m\;\times\;a\) , где \(F_т\) — сила тяги, \(F_<с>\) — силы сопротивления.
При решении конкретной задачи силы, воздействующие на тело, схематически изображают в виде векторов. На схеме:

  • сила тяжести mg;
  • сила реакции опоры \(N\) ;
  • сила трения \( F_<тр>\) ;
  • сила тяги \(F\) .

При нахождении тела на горизонтальной поверхности сила тяжести и сила реакции опоры уравновесят друг друга. Но если транспортное средство движется в гору или под гору, придется учесть влияние уклона. Тогда формула может выглядеть так: \(F_т-\;F_с-\;mg\;\times\;\sin\alpha=m\;\times\;a.\)

Работа A, которую должна совершить сила тяги, сдвигая тело, связана с ней соотношением \(A\;=\;F\;\times\;s\) . \(s\) здесь — расстояние, на которое тело переместилось.

Какое условие должно соблюдаться

Сила тяги всегда должна быть больше противодействующих ей сил.

Формула через мощность

Полезную механическую мощность \(N\) можно вычислить по формуле \(N=F_т\;\times\;v\) , где \(v\) — скорость. Для определения силы тяги нужно разделить мощность на скорость: \(F_т\;=\;\frac N v.\)

Измерение и обозначение силы тяги

Силу тяги обозначают \(F_т\) или \(F\) . Единица измерения — ньютон ( \(Н\) ).
Для решения задач недостаточно измерить усилие, приложенное к объекту, и выразить его конкретным числом, так как сила обладает еще и направлением. Чтобы подчеркнуть, что сила — векторная величина, к буквенному обозначению добавляют стрелку.

Как определить силу тяги двигателя. Примеры решения задач

Задача 1

Автомобиль может разгоняться до 216 км/ч. Максимальная мощность двигателя равна 96 кВт. Определите максимальную силу тяги двигателя.

Решение

Переведем киловатты в ватты, а километры в час — в метры в секунду:

\(F_т\;=\;\frac N v = \frac<96000> <60>= 1600 Н\)

Задача 2

Троллейбус весом 12 тонн за 5 секунд проезжает по горизонтальной дороге 10 метров. Сила трения равна 2,4 кН. Определите силу тяги, которую развивает двигатель.

Решение

Переведем тонны в килограммы, а килоньютоны в ньютоны:

\(F_т-\;F_<тр>=m\;\times\;a\) , следовательно, \(F_т=m\times a\;+\;F_<тр>\)

Чтобы определить ускорение а, воспользуемся формулой \(s\;=\;\frac2\)

Подставив численные значения величин, получаем:

Задача 3

Транспорт, весящий 4 тонны, едет в гору. Уклон — 1 метр на каждые 25 метров пути. \(\mu\) — 0,1 от силы тяжести, \(а = 0\) . Определите силу тяги.

Решение

Сделаем проекции на координатные оси:

Подставим значение \(F_<тр>\) в уравнение \(OX\) и определим \(F_т\) :

Найдем синус и косинус \(\alpha\) , подставим их в общую формулу:

Работы любой сложности

Квалифицированная помощь от опытных авторов

Источник статьи: http://wiki.fenix.help/fizika/sila-tyagi

Устройство автомобилей

Основы динамики автомобиля

Скоростная характеристика двигателя

Скоростная характеристика двигателя определяется зависимостями эффективной мощности Ne и крутящего момента Mк от частоты вращения n коленчатого вала.

Ведущие колеса автомобиля приводят его в движение в результате возникновения силы тяги, которая возникает при приложении крутящего момента к полуосям ведущих колес со стороны трансмиссии:

где Pт – сила тяги, Н;
Mт – крутящий (тяговый) момент на ведущем колесе, Нм;
r – радиус колеса, м.

Крутящий момент на ведущих колесах зависит от величины момента, развиваемого двигателем на коленчатом валу, передаточного числа iтр трансмиссии и ее КПД – ηтр :

Сила тяги Pт на ведущих колесах может быть определена не только по формуле (1), но и с учетом скорости vi движения автомобиля на i -й передаче и развиваемой двигателем эффективной мощности Nе :

Скорость vi движения автомобиля на i -й передаче пропорциональна частоте n вращения коленчатого вала, радиусу r ведущего колеса и обратно пропорциональна передаточному числу iтр i трансмиссии на i -й передаче:

Таким образом, частота вращения n коленчатого вала является определяющим параметром для показателей эффективной мощности Nе , крутящего момента Mк и силы тяги на ведущих колесах Pт .

На рисунке 1 приведена внешняя скоростная характеристика двигателя при полностью открытой дроссельной заслонке, которая определяет предельные возможности двигателя при значениях частоты вращения коленчатого вала от nmin до nmax .

Анализ графика показывает, что максимальная эффективная мощность и максимальный крутящий момент, развиваемый двигателем, доступен в узком интервале частот вращения коленчатого вала. При небольшой частоте вращения коленчатого вала величина этих динамических показателей недостаточна для появления на ведущих колесах требуемой для движения автомобиля силы тяги, а при превышении частотой вращения коленвала некоторого максимального порога двигатель начинает терять мощность и тяговые показатели, или, как говорят механики, начинает работать «вразнос».
По этой причине эффективная эксплуатация двигателя внутреннего сгорания возможна лишь в некотором узком диапазоне частот вращения коленчатого вала.

Скоростная характеристика двигателя во многом зависит от типа двигателя: чем круче кривая эффективной мощности Nе , тем большей приемистостью обладает двигатель.

Тяговая характеристика автомобиля

Тягово-скоростные свойства автомобиля удобно оценивать с помощью тяговой характеристики, т. е. зависимостью силы тяги на ведущих колесах от скорости движения на различных передачах (рис. 2).

Используя скоростную характеристику и задавая частоты вращения коленчатого вала от nmin до nmax при соответствующих значениях эффективной мощности или крутящего момента для каждой передачи по формуле (4) находят значения скорости v , а по формуле (3) находят значение тяговой силы Pт .

Число кривых на тяговой характеристике (рис. 2) соответствует числу ступеней в коробке передач.

Тяговая характеристика позволяет быстро определить максимальное значение силы тяги на ведущих колесах, которая может быть обеспечена при данной скорости движения автомобиля, поскольку она рассчитывается по наибольшей для данной частоты вращения коленчатого вала мощности двигателя. Меньшее значение силы тяги получается при недоиспользовании мощности двигателя, т. е. при неполной подаче топлива. Следовательно, с помощью тяговой характеристики можно оценить предельные тяговые возможности автомобиля в фактическом интервале скоростей его движения.

Силы и моменты, действующие на ведущие колеса

На ведущие колеса автомобиля действуют силы со стороны автомобиля (т. е. со стороны двигателя посредством агрегатов трансмиссии), а также силы со стороны дороги. Обозначим силы, действующие со стороны автомобиля, буквой Р , а со стороны дороги – буквой R (рис. 3).

Реактивные силы, действующие на колеса

Тяговый момент Мт на ведущих колесах стремится сдвинуть назад верхний слой дорожного покрытия, в результате чего со стороны дороги на ведущее колесо в зоне контакта действует противоположно направленная сила Rx – горизонтально направленная касательная реакция дороги.

Так как на автомобиле используются эластичные пневматические шины, то неизбежна частичная потеря момента Мт , поэтому продольную (горизонтальную) реакцию со стороны дороги, обеспечивающую качение колеса, можно записать как разность между силой тяги и потерями в шине:

где Рш – сила, учитывающая потери энергии в шинах ведущих колес.

Таким образом, касательная реакция дороги создает силу тяги.

Автомобиль своим весом G действует на каждое колесо, передавая усилие на дорогу, и, соответственно, вызывая нормальную реакцию дороги Rz . Следует учитывать, что при наличии на колесе крутящего момента нормальная реакция Rz прикладывается не к оси симметрии опорной площадки колеса, а на некотором расстоянии αш от нее, поскольку имеет место смещение центра давления из-за эластичности шины.

Эпюра элементарных нормальных реакций дороги, показанная на рисунке 4, объясняет причину смещения точки приложения реакции Rz . Это происходит из-за того, что нормальные реакции на переднем и заднем участках опорной площадки колеса различны по величине, так как силы, возникающие в упругом материале шины при приложении и снятии нагрузки неодинаковы.
Это объясняется действием сил внутреннего трения между взаимно перемещающимися частицами материала шины. При приложении нагрузки эти силы и силы упругости направлены в одну и ту же сторону, а при снятии – в противоположные стороны.

Боковая сила Рy значительно увеличивается при криволинейном движении автомобиля или при движении по косогору. Боковая реакция Ry со стороны дороги удерживает колеса автомобиля от бокового скольжения (заноса) при движении автомобиля поперек косогора или при выполнении маневра.

Сила тяги на ведущих колесах

Сила тяги Рт на ведущих колесах может быть определена, как отношение крутящего (тягового) момента Mт , подводимого к колесам, к их радиусу r :

При этом не учитываются затраты энергии на деформацию дорожного покрытия, трение внутри шины и силы инерции, обусловленные ускорением вращающихся масс колес и деталей трансмиссии в случае неравномерного движения.

Следует учитывать, что радиус колеса вследствие эластичности шины является переменной величиной.
Различают следующие радиусы автомобильных колес:

  • статический радиус колеса rст – расстояние от поверхности дороги до оси неподвижного колеса, воспринимающего вертикальную нагрузку, обусловленную силой тяжести, действующей на автомобиль (т. е. его весом G ). Значения статического радиуса приводятся заводом-изготовителем шины в технических характеристиках;
  • динамический радиус колеса rд – расстояние от поверхности дороги до оси катящегося колеса. Динамический радиус колеса во время движения может превышать его статический радиус, поскольку в результате нагрева шины давление внутри нее увеличивается.
    Кроме того, под действием центробежных сил с возрастанием скорости автомобиля шина растягивается в радиальном направлении, вследствие чего динамический радиус увеличивается. Динамический радиус, также, зависит от величины вертикальной нагрузки Pz .
  • радиус качения колеса rк – радиус условного недеформирующегося катящегося без скольжения колеса, которое имеет с данным эластичным колесом одинаковую угловую и линейную скорости.

Радиус качения колеса определяется по формуле:

где S – путь, пройденный колесом; nк – число оборотов колеса на пути S .

Если проскальзывание колеса относительно дороги отсутствует, что характерно для ведомого колеса, то радиусы rд и rк почти равны между собой. В случае полного буксования колеса его пройденный путь будет равен нулю, и тогда (согласно приведенной выше формуле) его радиус качения тоже будет равен нулю.
В случае движения колеса юзом (скольжение без вращения) число оборотов будет равно нулю, и, соответственно, радиус качения rк будет стремиться к бесконечности.

Различают еще и свободный радиус колеса rсв , который является половиной диаметра ненагруженного колеса при отсутствии его контакта с опорной поверхностью.

На дорогах с сухим покрытием скольжение ведущих колес и изменение радиуса незначительны. Поэтому радиусы статический rст , динамический rд и качения rк при расчетах считаются одинаковыми и обозначаются буквой r .

Источник статьи: http://k-a-t.ru/PM.01_mdk.01.01/7_teoria_avto_3/index.shtml

Оцените статью