- Сила и мощность сопротивления качению
- 3.11. Силы сопротивления движению и мощности, затрачиваемые на их преодоление
- Сила сопротивления качению
- Коэффициент сопротивления качению
- Скорости движения (а), давления воздуха в шине (б) и момента, передаваемого через колесо (в)
- Сопротивление качению
- Коэффициент сопротивления качению
- Сопротивление качению на неровной дороге
- Сопротивление качению на деформируемом покрытии
- Читайте также
- Сноски
- Комментарии
Сила и мощность сопротивления качению
Возникновение силы сопротивления качению при движении обусловлено потерями энергии на внутреннее трение в шинах, поверхностное трение шин о дорогу и образование колеи (на деформируемых дорогах). Потери на трение в шине необратимы, так как при деформации она нагревается и из нее выделяется теплота, которая рассеивается в окружающую среду.
Сила сопротивления качению (Рк) достигает наибольшего значения при движении по горизонтальной дороге.
| (3.1) |
где G – вес автомобиля, Н;
f – коэффициент сопротивления качению.
При движении на подъеме и спуске сила сопротивления качению уменьшается по сравнению с (Рк) на горизонтальной дороге, и тем значительнее, чем они круче и, следовательно: Рк = f·G·cosα
Коэффициент сопротивления качению зависит от многих конструктивных и эксплуатационных факторов и определяется экспериментально. Его средние значения для различных дорог при нормальном давлении воздуха в шине составляют 0,01–0,3. На дорогах с твердым покрытием сопротивление качению обусловлено главным образом деформациями шины. С ростом числа дорожных неровностей коэффициент сопротивления качению возрастает.
При скорости движения до 50 км/ч коэффициент сопротивления качению можно считать постоянным. При повышении скорости движения коэффициент сопротивления качению существенно увеличивается вследствие возрастания потерь энергии в шине на трение.
Коэффициент сопротивления качению в зависимости от скорости движения можно приближенно рассчитать по формуле:
| (3.2) |
где v – скорость автомобиля, км/ч.
На деформируемых дорогах коэффициент сопротивления качению определяется деформациями шины и дороги. В этом случае он зависит не только от типа шины, но и от глубины образующейся колеи и состояния грунта.
Коэффициент сопротивления качению во многом зависит от рисунка протектора, его износа, конструкции каркаса и качества материала шины.
На дорогах с твердым покрытием при уменьшении давления воздуха в шине коэффициент сопротивления качению повышается. На деформируемых дорогах при снижении давления воздуха в шине уменьшается глубина колеи, но возрастают потери на внутреннее трение в шине. Поэтому для каждого типа дороги рекомендуется определенное давление воздуха в шине, при котором коэффициент сопротивления качению имеет минимальное значение.
Зная силу сопротивления качению, можно определить мощность в кВт, затрачиваемую на преодоление этого сопротивления:
| (3.3) |
где v – скорость автомобиля, м/с.
Для горизонтальной дороги, где cos0° = 1 выражение 3.3 упростится.
Источник статьи: http://helpiks.org/7-20698.html
3.11. Силы сопротивления движению и мощности, затрачиваемые на их преодоление
Силами сопротивления называются силы, препятствующие движению автомобиля. Эти силы направлены против его движения.
При движении на подъеме, характеризуемом высотой Hп, длиной проекции Вп на горизонтальную плоскость и углом подъема дороги α, на автомобиль действуют следующие силы сопротивления (рис. 3.12): сила сопротивления качению Рк, равная сумме сил сопротивления качению передних (РК|) и задних (РК2) колес, сила сопротивления подъему Рп, сила сопротивления воздуха Д и сила сопротивления разгону РИ. Силы сопротивления качению и подъему связаны с особенностями дороги. Сумма этих сил называется силой сопротивления дороги РД.
Рис. 3.13. Потери энергии на внутреннее трение в шине:
а — точка, соответствующая максимальным значениям нагрузки и прогиба шины
Сила сопротивления качению
Возникновение силы сопротивления качению при движении обусловлено потерями энергии на внутреннее трение в шинах, поверхностное трение шин о дорогу и образование колеи (на деформируемых дорогах).О потерях энергии на внутреннее трение в шине можно судить по рис. 3.13, на котором приведена зависимость между вертикальной нагрузкой на колесо и деформацией шины — ее прогибом fш.
При движении колеса по неровной поверхности шина, испытывая действие переменной нагрузки, деформируется. Линия αО, которая соответствует возрастанию нагрузки, деформирующей шину, не совпадает с линией аО, отвечающей снятию нагрузки. Площадь области, заключенной между указанными кривыми, характеризует потери энергии на внутреннее трение между отдельными частями шины (протектор, каркас, слои корда и др.).
Потери энергии на трение в шине называются гистерезисом, а линия ОαО — петлей гистерезиса.
Потери на трение в шине необратимы, так как при деформации она нагревается и из нее выделяется теплота, которая рассеивается в окружающую среду. Энергия, затрачиваемая на деформацию шины, не возвращается полностью при последующем восстановлении ее формы.
Сила сопротивления качению Рк достигает наибольшего значения при движении по горизонтальной дороге. В этом случае
где G — вес автомобиля, Н; f — коэффициент сопротивления качению.
При движении на подъеме и спуске сила сопротивления качению уменьшается по сравнению с Рк на горизонтальной дороге, и тем значительнее, чем они круче. Для этого случая движения сила сопротивления качению
где α — угол подъема, °.
Зная силу сопротивления качению, можно определить мощность, кВт,
затрачиваемую на преодоление этого сопротивления:
где v —скорости автомобиля,м/c 2
Для горизонтальной дороги соs0°=1 и
Зависимости силы сопротивления качениюРк и мощности NК от скорости автомобиля v показаны на рис. 3.14
Коэффициент сопротивления качению
Коэффициент сопротивления качению существенно влияет на потери энергии при движении автомобиля. Он зависит от многих конструктивных и эксплуатационных
Рис 3.15. Зависимости коэффициента сопротивления качению от
Скорости движения (а), давления воздуха в шине (б) и момента, передаваемого через колесо (в)
факторов и определяется экспериментально. Его средние значения для различных дорог при нормальном давлении воздуха в шине составляют 0,01 . 0,1.Рассмотрим влияние различных факторов на коэффициент сопротивления качению.
Скорость движения. При изменении скорости движения в интервале 0. 50 км/ч коэффициент сопротивления качению изменяется незначительно и его можно считать постоянным в указанном диапазоне скоростей.
При повышении скорости движения за пределами указанного интервала коэффициент сопротивления качению существенно увеличивается (рис. 3.15, а) вследствие возрастания потерь энергии в шине на трение.
Коэффициент сопротивления качению в зависимости от скорости движения можно приближенно рассчитать по формуле
где — скорость автомобиля, км/ч.
Тип и состояние покрытия дороги. На дорогах с твердым покрытием сопротивление качению обусловлено главным образом деформациями шины.
При увеличении числа дорожных неровностей коэффициент сопротивления качению возрастает.
На деформируемых дорогах коэффициент сопротивления качению определяется деформациями шины и дороги. В этом случае он зависит не только от типа шины, но и от глубины образующейся колеи и состояния грунта.
Значения коэффициента сопротивления качению при рекомендуемых уровнях давления воздуха и нагрузки на шину и средней скорости движения на различных дорогах приведены ниже:
Асфальто- и цементобетонное шоссе:
в хорошем состоянии . 0,007. 0,015
в удовлетворительном состоянии . 0,015. 0,02
Гравийная дорога в хорошем состоянии . 0,02. 0,025
Булыжная дорога в хорошем состоянии. 0,025. 0,03
Грунтовая дорога сухая, укатанная . 0,025. 0,03
Обледенелая дорога, лед . 0,015. 0,03
Укатанная снежная дорога . 0,03. 0,05
Тип шины. Коэффициент сопротивления качению во многом зависит от рисунка протектора, его износа, конструкции каркаса и качества материала шины. Изношенность протектора, уменьшение числа слоев корда и улучшение качества материала приводят к падению коэффициента сопротивления качению вследствие снижения потерь энергии в шине.
Давление воздуха в шине. На дорогах с твердым покрытием при уменьшении давления воздуха в шине коэффициент сопротивления качению повышается (рис. 3.15, б). На деформируемых дорогах при снижении давления воздуха в шине уменьшается глубина колеи, но возрастают потери на внутреннее трение в шине. Поэтому для каждого типа дороги рекомендуется определенное давление воздуха в шине, при котором коэффициент сопротивления качению имеет минимальное значение.
Нагрузка на колесо. При увеличении вертикальной нагрузки на колесо коэффициент сопротивления качению существенно возрастает на деформируемых дорогах и незначительно — на дорогах с твердым покрытием.
Момент, передаваемый через колесо. При передаче момента через колесо коэффициент сопротивления качению возрастает (рис. 3.15, в) вследствие потерь на проскальзывание шины в месте ее контакта с дорогой. Для ведущих колес значение коэффициента сопротивления качению на 10. 15 % больше, чем для ведомых.
Коэффициент сопротивления качению оказывает существенное влияние на расход топлива и, следовательно, на топливную экономичность автомобиля. Исследования показали, что даже небольшое уменьшение этого коэффициента обеспечивает ощутимую экономию топлива. Поэтому неслучайно стремление конструкторов и исследователей создать такие шины, при использовании которых коэффициент сопротивления качению будет незначительным, но это весьма сложная проблема.
Источник статьи: http://studfile.net/preview/6163106/page:10/
Сопротивление качению
Сопротивление качению зависит от массы автомобиля и коэффициента трения качения. Масса автомобиля при этом оказывает первостепенное влияние на величину сопротивления качению. Большая масса проявляется неблагоприятно в любом случае, если мы стремимся к экономии энергии, то уменьшение массы автомобиля является одной из первостепенных задач.
Масса проявляется в виде силы, прижимающей автомобиль к земле. Передвижению препятствует сила, которая зависит от коэффициента трения качения между автомобилем и поверхностью дороги. Здесь имеется возможность экономить определенную энергию. Сила сопротивления качению автомобиля Pf рассчитывается по формуле
где Q – нормальная нагрузка; f – коэффициент трения качения.
Коэффициент сопротивления качению
Ниже приведены значения коэффициента f , которые действительны для качения шины колеса по поверхности дороги с различным покрытием и для других движителей:
Покрытие | Значение f |
---|---|
Колесо с шиной | |
Асфальтобетон | 0,01 |
Бетон, мелкая брусчатка | 0,015 |
Гравийное укатанное с дёгтевой пропиткой | 0,02 |
Щебёночное | 0,025 |
Грунтовое укатанное | 0,05 |
Грунтовое размокшее | 0,1 |
Пахота | 0,15-0,35 |
Гусеничный движитель | |
Пахота | 0,07-0,15 |
Укатанный снег | 0,15 |
Рыхлый снег | 0,3 |
Стальное колесо на рельсе | 0,001-0,002 |
Примечание. Значения первых семи коэффициентов зависят также от давления в шине и ее типа, о чем будет сказано ниже. |
В приближенных расчетах можно допускать, что коэффициент сопротивления качению с изменением скорости автомобиля не меняется. Наименьшее сопротивление качению имеет стальное колесо на рельсе, наибольшее – гусеничный движитель на рыхлом снегу. Чем меньше деформация поверхности, тем меньше сопротивление качению.
Сопротивление качению на неровной дороге
При движении по неровной дороге сопротивление качению зависит от жесткости амортизирующего элемента.
Наезд колеса на препятствие |
---|
Если на поверхности дороги возникает препятствие высотой h (см. рис. слева) и автомобиль наезжает на него с малой скоростью, то он может остановиться. На рисунке масса автомобиля представлена грузом М , прикрепленным к оси колеса через пружину F . Предположим, что масса М жестко соединена с осью. В этом случае для преодоления препятствия необходима такая вертикальная сила V , которая способна поднять массу М на высоту h . Эта сила может обеспечиваться, например, кинетической энергией автомобиля при движении. Чтобы автомобиль мог продолжать движение, необходимо, чтобы его кинетическая энергия была большей, чем требуется для поднятия автомобиля на высоту h . Необходимая величина вертикальной силы зависит от угла наезда α и рассчитывается по формуле
Время подъема определяется скоростью автомобиля, а форма препятствия определяет процесс изменения скорости и ускорения. На вершине твердого препятствия скорость массы М не будет равна нулю, и колесо отскочит от препятствия. Однако гравитационная сила остановит массу М и вернет ее на землю путем свободного падения. Энергия горизонтальной силы Н будет затрачена на перемещение колеса на высоту препятствия, но при отскоке колеса эта сила уже не действует и, следовательно, не влияет на увеличение сопротивления качению автомобиля [2].
Если масса М опирается на пружину F и колесо снабжено упругой шиной, то исчезает необходимость подъема колеса и массы М на высоту препятствия h . При благоприятном отношении неподрессоренной массы колеса и подвески к подрессоренной массе М колесо не отскочит от препятствия, и часть энергии, аккумулированная в сжатой пружине и шине, после преодоления препятствия вернется и передвинет автомобиль вперед. Однако значительная часть энергии за счет внутреннего трения в амортизирующих элементах потеряется, превратившись в теплоту. Достаточно мягкая подвеска колес может уменьшить потери энергии при переезде через неровность.
Сопротивление качению на деформируемом покрытии
На дороге с хорошим покрытием действует правило: жесткое колесо на твердом, малодеформируемом покрытии обеспечивает наименьшие потери, обусловленные сопротивлением качению. Если неровности имеют большой размер, то увеличение жесткости колеса и амортизирующих элементов вызывает рост сопротивления качению. В этом случае выгодным является использование мягкой шины больших размеров и нежестких амортизаторов. Шина больших размеров с мягкой боковой поверхностью и низким давлением сама амортизирует мелкие неровности, так что и неподрессоренная масса будет испытывать колебания весьма малой амплитуды, которые хорошо гасятся мягкой подвеской. Небольшое давление в шине увеличивает площадь ее контакта с поверхностью дороги, что уменьшает глубину погружения колеса в мягкое покрытие и соответственно образует колею меньшей глубины.
Коэффициент трения качения жёсткого колеса на деформируемом покрытии имеет иной характер, чем на твердой поверхности, и определяется по формуле
где h – глубина погружения колеса в покрытие, мм; D – диаметр колеса, мм.
В этом случае давление воздуха в шине может влиять противоположно тому, как это имеет место на твердом покрытии, поскольку из-за малого погружения колеса в покрытие при низком давлении в шине коэффициент сопротивления качению будет меньше, чем при высоком. После того как автомобиль с такими шинами выйдет с бездорожья на шоссе, в них необходимо увеличить давление, иначе боковые поверхности шин при большом прогибе будут сильно разогреваться. На некоторых автомобилях используется специальное оборудование, позволяющее изменять давление в шинах, не прекращая движения.
Читайте также
Наибольшую долю в сопротивлении движению легкового автомобиля по горизонтальному участку дороги с высокой скоростью составляет аэродинамическое сопротивление. Снижение этого сопротивления оказывает значительное влияние на уменьшение расхода топлива.
Каждый из типов двигателей имеет свои достоинства и недостатки: один двигатель ценится за достаточно хорошую систему охлаждения, другой — за ее отсутствие вовсе и т. д.
Сноски
- ↺ Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. — М.: Машиностроение, 1987. — 320 с.: ил.//Стр. 16 — 18 (книга есть в библиотеке сайта). – Прим. icarbio.ru
- ↺ При последующем контакте колеса с дорогой энергия сопротивления качению проявится в виде части энергии, поглощенной шиной при ударе колеса о поверхность дороги. – Прим. ред. А.Р. Бенедиктова
Комментарии
Спасибо!Ваша информация очень помогла.
коэф трения качения — в какой размерности? мм, см .
Источник статьи: http://icarbio.ru/articles/soprotivlenie-kacheniu.html