Системы впрыска датчики автомобилей

Виды и особенности работы систем впрыска бензиновых двигателей

Система впрыска топлива применяется для дозированной подачи топлива в двигатель внутреннего сгорания в строго определенный момент времени. От характеристик данной системы зависит мощность, экономичность и экологический класс двигателя автомобиля. Системы впрыска могут иметь различную конструкцию и варианты исполнения, что характеризует их эффективность и сферу применения.

Краткая история появления

Инжекторная система подачи топлива начала активно внедряться в 70-х годах, явившись реакцией на возросший уровень выбросов загрязняющих веществ в атмосферу. Она была заимствована в авиастроении и являлась экологически более безопасной альтернативой карбюраторному двигателю. Последний был оснащен механической системой подачи топлива, при которой топливо поступало в камеру сгорания за счет разницы давлений.

Первая система впрыска была практически полностью механической и отличалась малой эффективностью. Причиной этого был недостаточный уровень технического прогресса, который не мог полностью раскрыть ее потенциал. Ситуация изменилась в конце 90-х годов с развитием электронных систем управления работой двигателя. Электронный блок управления стал контролировать количество впрыскиваемого топлива в цилиндры и процентное соотношение компонентов топливовоздушной смеси.

Виды систем впрыска бензиновых двигателей

Существует несколько основных видов систем впрыска топлива, которые отличаются способом образования топливовоздушной смеси.

Моновпрыск, или центральный впрыск

Схема с центральным впрыском предусматривает наличие одной форсунки, которая расположена во впускном коллекторе. Такие системы впрыска можно найти только на старых легковых автомобилях. Она состоит из следующих элементов:

  • Регулятор давления – обеспечивает постоянную величину рабочего давления 0,1 МПа и предотвращает появление воздушных пробок в топливной системе.
  • Форсунка впрыска – осуществляет импульсную подачу бензина во впускной коллектор двигателя.
  • Дроссельная заслонка – выполняет регулирование объема подаваемого воздуха. Может иметь механический или электрический привод.
  • Блок управления – состоит из микропроцессора и блока памяти, который содержит эталонные данные характеристики впрыска топлива.
  • Датчики положения коленчатого вала двигателя, положения дроссельной заслонки, температуры и т.д.
Читайте также:  Автомобили с цветными литыми дисками

Системы впрыска бензина с одной форсункой работают по следующей схеме:

  • Двигатель запущен.
  • Датчики считывают и передают информацию о состоянии системы в блок управления.
  • Полученные данные сравниваются с эталонной характеристикой, и, на основе этой информации, блок управления рассчитывает момент и длительность открытия форсунки.
  • На электромагнитную катушку направляется сигнал об открытии форсунки, что приводит к подаче топлива во впускной коллектор, где он смешивается с воздухом.
  • Смесь топлива и воздуха подается в цилиндры.

Распределенный впрыск (MPI)

Система с распределенным впрыском состоит из аналогичных элементов, но в такой конструкции предусмотрены отдельные форсунки для каждого цилиндра, которые могут открываться одновременно, попарно или по одной. Смешение воздуха и бензина происходит также во впускном коллекторе, но, в отличие от моновпрыска, подача топлива осуществляется только во впускные тракты соответствующих цилиндров.

Схема работы системы с распределенным впрыском

Управление осуществляется электроникой (KE-Jetronic, L-Jetronic). Это универсальные системы впрыска топлива Bosch, получившие широкое распространение.

Принцип действия распределенного впрыска:

  • В двигатель подается воздух.
  • При помощи ряда датчиков определяется объем воздуха, его температура, скорость вращения коленчатого вала, а также параметры положения дроссельной заслонки.
  • На основе полученных данных электронный блок управления определяет объем топлива, оптимальный для поступившего количества воздуха.
  • Подается сигнал, и соответствующие форсунки открываются на требуемый промежуток времени.

Непосредственный впрыск топлива (GDI)

Система предусматривает подачу бензина отдельными форсунками напрямую в камеры сгорания каждого цилиндра под высоким давлением, куда одновременно подается воздух. Эта система впрыска обеспечивает наиболее точную концентрацию топливовоздушной смеси, независимо от режима работы мотора. При этом смесь сгорает практически полностью, благодаря чему уменьшается объем вредных выбросов в атмосферу.

Схема работы системы непосредственного впрыска

Такая система впрыска имеет сложную конструкцию и восприимчива к качеству топлива, что делает ее дорогостоящей в производстве и эксплуатации. Поскольку форсунки работают в более агрессивных условиях, для корректной работы такой системы необходимо обеспечение высокого давления топлива, которое должно быть не менее 5 МПа.

Конструктивно система непосредственного впрыска включает в себя:

  • Топливный насос высокого давления.
  • Регулятор давления топлива.
  • Топливная рампа.
  • Предохранительный клапан (установлен на топливной рампе для защиты элементов системы от повышения давления больше допустимого уровня).
  • Датчик высокого давления.
  • Форсунки.

Электронная система впрыска такого типа от компании Bosch получила наименование MED-Motronic. Принцип ее действия зависит от вида смесеобразования:

  • Послойное – реализуется на малых и средних оборотах двигателя. Воздух подается в камеру сгорания на большой скорости. Топливо впрыскивается по направлению к свече зажигания и, смешиваясь на этом пути с воздухом, воспламеняется.
  • Стехиометрическое. При нажатии на педаль газа происходит открытие дроссельной заслонки и осуществляется впрыск топлива одновременно с подачей воздуха, после чего смесь воспламеняется и полностью сгорает.
  • Гомогенное. В цилиндрах провоцируется интенсивное движение воздуха, при этом на такте впуска происходит впрыск бензина.

Непосредственный впрыск топлива в бензиновом двигателе – наиболее перспективное направление в эволюции систем впрыска. Впервые он был реализован в 1996 году на легковых автомобилях Mitsubishi Galant, и сегодня его устанавливают на свои автомобили большинство крупнейших автопроизводителей.

Источник статьи: http://techautoport.ru/dvigatel/toplivnaya-sistema/sistemy-vpryska-topliva-benzinovyh-dvigateley.html

Автолюбители

все полезное находится здесь

Датчики системы впрыска

Датчики системы впрыска

Выдают контроллеру информацию о параметрах работы двигателя (кроме датчика скорости автомобиля), на основании которых он рассчитывает момент, длительность и порядок открытия форсунок, момент и порядок искрообразования. При выходе из строя отдельных датчиков контроллер переходит на обходные алгоритмы работы; при этом могут ухудшиться некоторые параметры двигателя (мощность, приемистость, экономичность), но движение с такими неисправностями возможно. Единственным исключением является датчик положения коленчатого вала, при его неисправности двигатель работать не может.

Датчик положения коленчатого вала

Установлен на крышке масляного насоса. Он выдает контроллеру информацию об угловом положении коленчатого вала и моменте прохождения поршнями 1-го и 4-го цилиндров ВМТ. Датчик — индуктивного типа, реагирует на прохождение зубьев задающего диска на шкиве привода генератора вблизи своего сердечника. Зубья расположены на диске с интервалом 6°. Для синхронизации с ВМТ два зуба из 60 срезаны, образуя впадину. При прохождении впадины мимо датчика в нем генерируется так называемый опорный импульс синхронизации. Установочный зазор между сердечником и зубьями должен находиться в пределах 1±0,2 мм.

Датчик температуры охлаждающей жидкости

Ввернут в выпускной патрубок на головке блока цилиндров. Он представляет собой терморезистор, меняющий свое сопротивление в зависимости от температуры: Контроллер подает на датчик стабилизированное напряжение +5 В через резистор и по падению напряжения рассчитывает температуру двигателя, корректируя состав смеси.

Датчик положения дроссельной заслонки (ДПДЗ)

Установлен на оси дроссельной заслонки и представляет собой потенциометр. На один конец его обмотки подается стабилизированное напряжение +5 В, а другой соединен с «массой». С третьего вывода потенциометра (ползунка) снимается сигнал для контроллера. Для проверки датчика включите зажигание и измерьте напряжение между «массой» и выводом ползунка (не отключайте разъем — провода можно проколоть тонкими иглами, подключенными к выводам вольтметра) — оно должно быть не более 0,7 В. Поворачивая рукой пластмассовый сектор, полностью откройте дроссельную заслонку и вновь измерьте напряжение — оно должно быть более 4 В. Выключите зажигание, отсоедините разъем, подключите омметр между выводом ползунка и любым из двух оставшихся. Медленно поворачивайте сектор рукой, следя за показаниями стрелки. На всем диапазоне рабочего хода скачков быть не должно. Иначе замените датчик. При выходе из строя ДПДЗ его функции берет на себя датчик массового расхода воздуха. При этом обороты холостого хода не опускаются ниже 1500 мин –1 .

Датчик массового расхода воздуха

Расположен между воздушным фильтром и впускным шлангом. Он состоит из двух датчиков (рабочего и контрольного) и нагревательного резистора. Проходящий воздух охлаждает один из датчиков, а электронный модуль преобразует разность температур датчиков в выходной сигнал для контроллера. В разных вариантах систем впрыска применяются датчики двух типов — с частотным или амплитудным выходным сигналом. В первом случае в зависимости от расхода воздуха меняется частота, во втором случае — напряжение. При выходе из строя датчика массового расхода воздуха его функции берет на себя ДПДЗ.

Датчик детонации

Одноконтактный датчик детонации ввернут в верхнюю часть блока цилиндров, двухконтактный датчик крепится на шпильке.
Действие датчика основано на пьезоэффекте: при сжатии пьезоэлектрической пластинки на ее концах возникает разность потенциалов. При детонации в датчике образуются импульсы напряжения, по которым контроллер регулирует опережение зажигания.

Датчик кислорода (лямбда-зонд)

Установлен в приемной трубе системы выпуска отработавших газов. Кислород, содержащийся в отработавших газах, создает разность потенциалов на выходе датчика, изменяющуюся приблизительно от 0,1 В (много кислорода — бедная смесь) до 0,9 В (мало кислорода — богатая смесь). По сигналу от датчика кислорода контроллер корректирует подачу топлива форсунками так, чтобы состав отработавших газов был оптимальным для эффективной работы нейтрализатора (напряжение кислородного датчика — около 0,5 В). Для нормальный работы датчик кислорода должен иметь температуру не ниже 360 °С, поэтому для быстрого прогрева после запуска двигателя в него встроен нагревательный элемент.

Контроллер постоянно выдает в цепь датчика кислорода стабилизированное опорное напряжение 0,45±0,10 В. Пока датчик не прогрет, опорное напряжение остается неизменным. При этом контроллер управляет системой впрыска, не учитывая напряжение на датчике. Как только датчик прогреется, он начинает изменять опорное напряжение. Тогда контроллер отключает нагрев датчика и начинает учитывать сигнал датчика кислорода.

СО-потенциометр

Установлен на щитке передка (рядом с чашкой левой амортизаторной стойки) и представляет собой переменный резистор. СО-потенциометр служит для регулировки уровня СО в отработавших газах двигателей, не оснащенных каталитическим нейтрализатором.

Датчик скорости автомобиля

Установлен в коробке передач на приводе спидометра. Принцип его действия основан на эффекте Холла. Датчик выдает на контроллер прямоугольные импульсы напряжения (нижний уровень — не более 1В, верхний — не менее 5 В) с частотой, пропорциональной скорости вращения ведущих колес. 6 импульсов датчика соответствуют 1 м пути автомобиля. Контроллер определяет скорость автомобиля по частоте импульсов.

Источник статьи: http://avtolyubiteli.com/datchiki-sistemyi-vpryiska/

Системы впрыска датчики автомобилей

Чувствительный элемент датчика кислорода находится в потоке отработавших газов. При достижении датчиком рабочих температур, превышающих 360 град. С, он начинает генерировать собственную ЭДС, пропорциональную содержанию кислорода в отработанных газах. На практике, сигнал ДК (при замкнутой петле обратной связи) представляет собой быстро изменяющееся напряжение, колеблющееся между 50 и 900 милливольт. Изменение напряжения вызвано тем, что система управления постоянно изменяет состав смеси вблизи точки стехиометрии, сам ДК не способен генерировать какое-либо переменное напряжение.

Выходное напряжение зависит от концентрации кислорода в отработавших газах в сопоставлении с опорными данными о содержании кислорода в атмосфере, поступающими с элемента конструкции датчика, служащего для определения концентрации атмосферного кислорода. Этот элемент представляет собой полость, соединяющуюся с атмосферой через небольшое отверстие в металлическом наружном кожухе датчика. Когда датчик находится в холодном состоянии, он не способен генерировать собственную ЭДС, и напряжение на выходе ДК равно опорному (или близко к нему).

Для ускорения прогрева датчика до рабочей температуры он снабжен электрическим нагревательным элементом. Различают датчики с постоянным и импульсным питанием нагревательного элемента, в последнем случае, подогревом ДК управляет ЭБУ. Электронный блок управления постоянно подаёт на цепь датчика стабильное опорное напряжение 450 милливольт. Непрогретый датчик имеет высокое внутреннее сопротивление и не генерирует собственную ЭДС, поэтому, ЭБУ «видит» только указанное стабильное опорное напряжение. По мере прогрева датчика при работающем двигателе его внутреннее сопротивление уменьшается, и он начинает генерировать собственное напряжение, которое перекрывает выдаваемое ЭБУ стабильное опорное напряжение. Когда ЭБУ «видит» изменяющееся напряжение, ему становится известным, что датчик прогрелся, и его сигнал готов для применения в целях регулирования состава смеси.

График выходного сигнала Датчика Кислорода

Датчик кислорода, применяемый в серийных системах впрыска, не способен регистрировать изменения состава смеси, заметно отличающиеся от 14 , 7 : 1 , в силу того, что линейный участок его характеристики очень «узкий» (см. график выше по тексту). За этими пределами лямбда – зонд почти не меняет напряжение, то есть не регистрирует изменения состава ОГ.

На автомобилях ВАЗ прежних модификаций ( 1 , 5 л.) в системах Евро‑ 2 применялся датчик BOSCH 0 258 005 133 . В системах Евро‑ 3 он применялся в качестве первого ДК, устанавливаемого до катализатора. Вторым ДК, для контроля содержания вредных выбросов после катализатора устанавливается датчик с «обратным» разъемом (хотя, в встречаются и авто с одинаковыми). В новых автомобилях 1 , 5 / 1 , 6 л., с системой впрыска Bosch M 7 . 9 . 7 и Январь 7 . 2 , выпускаемых с октября 2004 г. устанавливается датчик BOSCH 0 258 006 537 . Внешние отличия смотрите на фотографиях. Новый ДК имеет керамический нагреватель, что позволяет существенно снизить потребляемый им ток и уменьшить время прогрева.

Для замены вышедших из строя оригинальных лямбда-зондов фирма Bosch выпускает специальную серию из 7 универсальных датчиков, которые перекрывают практически весь диапазон применяемых штатно датчиков. Информация по ним ЗДЕСЬ.

КАТАЛИТИЧЕСКИЙ НЕЙТРАЛИЗАТОР

В автомобилях с обратной связью по ДК (нормы токсичности Евро-II, Евро-III и выше) применяется нейтрализатор вредных выбросов в выхлопных газах. Применение катализаторов на системах без ОС возможно, при грамотной настройке и полностью исправном двигателе, т.к наиболее эффективно работает только на смесях, близких к стихеометрическим ( 14 , 7 : 1 ), при любом отклонении от которых эффективность его значительно снижается.

Спорную по некоторым утверждениям, но, безусловно, интересную статью посвященную катализаторам читайте ЗДЕСЬ.

В автомобилях прошлых лет выпуска применялся керамический нейтрализатор, который позже заменил металлический. В последних моделях 16 V двигатели 1 , 6 могут оснащаться так называемым катколлектором. Следует внимательно относиться к этому устройству – катализатор (или катколлектор) наиболее эффективно работают при очень высокой температуре и при пропусках воспламенения в каком-либо цилиндре бензин будет воспламеняться в катализаторе (катколлекторе), выделяя огромную тепловую энергию – в считанные минуты он раскаляется добела, что может стать причиной нарушения электропроводки и даже возгорания автомобиля. Именно по этой причине не рекомендуется отключать в прошивках диагностику пропусков воспламенения. Попадание несгоревшего топлива в катколлектор способно в считанные секунды разрушить его.

ДАТЧИК МАССОВОГО РАСХОДА ВОЗДУХА

Существует довольно много различных типов датчиков массового расхода воздуха (ДМРВ): механические (флюгерного типа), ультразвуковые, термоанемометрические и т.д.

В данном разделе мы рассмотрим устройство термоанемометрического датчика HFM‑ 5 производства Bosch, устанавливаемого на автомобили ВАЗ. Чувствительный элемент датчика представляет собой тонкую пленку, на которой расположено несколько температурных датчиков и нагревательный резистор. В середине пленки находится область подогрева, степень нагрева которой контролируется с помощью температурного датчика. На поверхности пленки со стороны потока воздуха и с противоположной стороны симметрично расположены еще два термодатчика, которые при отсутствии потока воздуха регистрируют одинаковую температуру. При наличии потока воздуха первый датчик охлаждается, а температура второго остается практически неизменной, вследствие подогрева потока воздуха в зоне нагревателя. Дифференциальный сигнал обоих датчиков пропорционален массе проходящего воздуха. Электронная схема датчика преобразует этот сигнал в постоянное напряжение, пропорциональное массе воздуха. Такая конструкция получила название Hot Film (HFM), к ее достоинствам можно отнести высокую точность измерения и способность регистрировать обратный поток воздуха, к недостаткам – низкую надежность в условиях загрязнения и попадания влаги.

В старых системах (ЭБУ Январь‑ 4 и GM-ISFI- 2 S) применялись другие термоанемометрические ДМРВ, чувствительные элементы которых были выполнены в виде нитей. Такие датчики получили название Hot Wire MAF Sensor. Выходной сигнал этих датчиков был частотный, то есть в зависимости от расхода воздуха менялось не напряжение, а частота выходных импульсов. Датчики были менее точны, не позволяли регистрировать обратный поток, но эти недостатки перекрывала очень высокая надежность.

ДМРВ – очень важный датчик в любой системе управления. На основе его сигнала производится расчет циклового наполнение цилиндра, пересчитываемого в конечном итоге в длительность импульса открытия форсунок.

На автомобили ВАЗ устанавливались несколько типов датчиков: GM, BOSCH, SIEMENS и Российский. В 1999 – 2004 гг. на конвейере ВАЗа устанавливались два типа датчиков 0 280 218 – 037 и 0 280 218 – 004 . Эти датчики выдают разные параметры выходного напряжения (тарировки) на одинаковом расходе воздуха и взаимозамена (вернее, замена 004 на 037 , как правило) возможна только с заменой тарировочных таблиц в прошивке. То же касается и нового датчика 116 , устанавливаемого серийно с начала 2005 г.

В соответствии с действующей документацией, на ВАЗе разрешены к применению три модификации датчика расхода воздуха HFM 5 фирмы BOSCH. Под каталогом ВАЗ понимается каталоги запасных частей для конкретных автомобилей. К сожалению на датчиках присутствуют только последние три цифры «Бошевского» каталожного номера, а ВАЗовский № отсутствует.

Модель № Bosch № ВАЗ
HFM 5 ‑ 4 . 7 0 280 212 004 21083 – 1130010 — 01
HFM 5 ‑ 4 . 7 0 280 212 037 21083 – 1130010 — 10
HFM 5 -CL 0 280 212 116 21083 – 1130003 — 20

С октября 2004 г. основным датчиком является 116 . Модификация 116 предназначена для проектов с контроллерами нового поколения Bosch М 7 . 9 . 7 и его отечественными аналогами – Январь 7 . 2 , параллельное производство которых начато фирмами Итэлма и Автэл. Тарировка датчика и его конструкция отличаются от 004 и 037 .

Датчик поставляется только в сборе, с кодом и маркируется зеленым кругом. Сам элемент имеет измененную конструкцию. В 2006 г. для усложнения кражи или подмены элементов ДМРВ для закрепления чувствительного элемента в корпусе применяются специальные однонаправленные болты.

Источник статьи: http://chiptuner.ru/content/sensor/

Оцените статью