Сканирование пространства перед автомобилем

Элементы системы безопасности автомобиля: PMD [ Датчики, сканирующие пространство перед машиной ]

Узнать о всех системах безопасности автомобилей вы можете в статье: » Системы безопасности автомобиля «

К идеи Photonic Mixer Devices [ Датчики, сканирующие пространство перед машиной ]

Разработчик: Audi, PMD Technologies

Датчики, сканирующие пространство перед машиной, уже используются в серийных автомобилях. И экспериментальных систем в последнее время также появилось немало. Но все они, видимо, имеют недостатки, раз инженеры ищут новые методы решения той же задачи.
На 9-ом международном форуме автомобильной электроники (Advanced Microsystems for Automotive Applications), прошедшем в Берлине с 17 по 18 марта 2005 года, компания Audi представила новинку в области безопасности – новый тип сенсорной системы, способной различать объекты перед автомобилем.
Новая высокочувствительная система способна формировать трёхмерное изображение сцены перед транспортным средством.
В основе технологии — источник модулированного инфракрасного излучения и датчик (он размещён позади ветрового стекла на уровне зеркала заднего вида), сделанный из новых фоточувствительных полупроводниковых элементов, известных как «Фотонные смешивающие устройства» (Photonic Mixer Devices, PMD).
Эти устройства способны обрабатывать сигналы, возвращённые от множества точек предмета одновременно. По строению они похожи на обычные приборы с зарядовой связью (так называемые ПЗС-матрицы), используемые в видео- и фотокамерах, но способны «чувствовать» расстояние, как обычные матрицы ощущают яркость, передавая его как уровни серого.

Источник статьи: http://moi-nissan.ru/car_security/787-pmd_car_security_system.html

Как работают сенсоры роботов-пылесосов

Содержание

Содержание

Наблюдение за работой робота-пылесоса — довольно медитативное и умиротворяющее занятие. Но время от времени у пытливых умов появляется вопрос: «Как роботу удается ориентироваться в пространстве и преодолевать возникающие на его пути препятствия?» Давайте разбираться!

Несмотря на огромное количество мифов о работе робота-пылесоса, этот девайс по праву занимает свое место в наших домах, а все благодаря той легкости и скорости, с которой он выполняет уборку. Его эффективность во многом зависит от количества и типа электронных сенсоров, установленных на борту. В зависимости от модели, робот-пылесос использует от 6 до 15 датчиков, включенных в различные системы.

Назначение датчиков — построение карты объекта, ориентирование в пространстве и обеспечение безопасности девайса. Данные, получаемые с сенсоров, обрабатывает управляющая программа. Ориентируясь на полученные значения параметров, применяются те или иные сценарии, непосредственно влияющие на действия робота-уборщика.

Только слаженная работа всех систем обеспечивает работу пылесоса.

Система позиционирования

Основная система любого робота-пылесоса, отвечающая за построение карты убираемой территории и определение точного местоположения электронного уборщика внутри помещения.

В основе работы системы лежит метод SLAM (Simultaneous Localization And Mapping), основная идея которого — построение ситуационной карты и локализация объекта в пространстве. Это происходит следующим образом. Сканер, установленный на объекте, проверяет пространство вокруг и по отклику своих датчиков составляет карту местности.

В сегмент бытовой техники изобретение пришло из области освоения космоса и близлежащих планет: одними из первых такие радары (точнее, лидары) получили луноходы и марсоходы.

В роботах-пылесосах построение карты необходимо для определения оптимального алгоритма уборки. После составления карты управляющая программа разрабатывает и отдает на исполнение оптимальный маршрут передвижения робота. Мобильный пылесос должен заглянуть даже в самый отдаленный уголок!

В современных роботах-пылесосах построение карты окружающего пространства производят одним из двух типов датчиков.

Лазерное сканирование пространства

Сканирование пространства происходит с помощью лидара (или, как его еще называют, LDS-датчика) — прибора, применяемого для точных измерений в газообразной среде. Распознать LDS-датчик достаточно просто: он представляет собой небольшой выступ в форме шайбы, расположенный на верхней плоскости девайса. Датчик содержит источник и приемник лазерного или светового луча (в маломощных девайсах применяют светодиоды, излучающие потоки света в инфракрасном диапазоне). Для обеспечения кругового обзора LDS-сенсор вращается вокруг своей оси с довольно высокой частотой.

Испускаемый световой луч, встречаясь с препятствиями на своем пути (стены, крупная мебель и т. д.), отражается от них и улавливается приемником лидара. Расстояние до препятствия вычисляется по временной задержке между генерацией и приемом лазерного луча. В большинстве моделей роботов-пылесосов частота вращения датчика, как правило, составляет 5 об/сек, чего вполне достаточно для построения карты и довольно точного вычисления положения пылесоса в помещении.

Работающие по такому же принципу датчики можно встретить и на прототипах беспилотных автомобилей.

LDS-датчик позволяет достаточно точно определять расстояние до стен, крупных предметов и других препятствий. Как правило, в роботах-пылесосах применяются датчики, позволяющие уверенно сканировать пространство на расстоянии до 6 метров.

Основным недостатком такой конструкции является то, что датчик выступает над уровнем верхней плоскости, и добавляет к высоте робота-пылесоса несколько сантиметров. В некоторых случаях это может быть критично, поскольку пылесос просто физически не сможет заехать под низко расположенную полку или пространство под кроватью или шкафом.

Визуальная система навигации

Другим способом навигации является так называемая безлидарная система, основанная на широкоугольной камере.

Вот только камера применяется особая, позволяющая создавать объемные снимки пространства. Иначе такие камеры называют «камерами глубины» или ToF-камерами (Time of Flight, что в буквальном переводе означает «время полета»).

ToF-камеры — новое веяние в сфере мобильных гаджетов. Ими оснащены многие флагманские смартфоны. С помощью такой камеры легко и довольно недорого реализуется механизм распознавания по лицу, обмануть его фотографией человека невозможно.

ToF-камера представляет собой источник света, излучающий в инфракрасном спектре, и светочувствительную матрицу, улавливающую интенсивность отраженного света. Их принцип действия схож с лазерным определением расстояния. Камера рассчитывает время с момента испускания пучка света до момента его фиксации на светочувствительной матрице, вычисляет расстояние до объекта в соответствии с временной задержкой и составляет объемную карту помещения.

Преимуществ у такого метода несколько. Во-первых, уровень освещения не играет определяющей роли. Даже в полумраке сенсору по силам «отрисовать» границы убираемого пространства. Во-вторых, камеру встраивают вровень с верхней поверхностью робота, что позволяет сделать его более компактным, и, следовательно, открыть ему дорогу в труднодоступные места.

Система ориентирования в пространстве

Задача системы ориентирования — минимизация столкновений с препятствиями, возникающими на пути робота-пылесоса.

В отличие от системы позиционирования, сканирующей пространство вокруг пылесоса на несколько метров, датчики ориентирования способны выявить препятствие в пределах одного метра. Как правило, для выявления преград используют датчики двух типов: ультразвуковые и инфракрасные.

Принцип их действия схож. В обеих конструкциях имеются передатчик и приемник сигнала. В качестве самого сигнала используют либо звуковые волны, неслышимые человеческому уху (частотой свыше 20 кГц), или световые лучи инфракрасного диапазона.

При обнаружении препятствий, управляющая программа вносит корректировку в траекторию движения робота-пылесоса и уводит его в сторону.

Ведущую роль в системе играет ультразвуковой датчик. Он располагается в передней части устройства.

Инфракрасные сенсоры располагают на боковых поверхностях робота по его периметру. Они дополняют основной датчик, обеспечивая пылесосу возможность кругового отслеживания препятствий.

Боковые датчики выполняют еще одну функцию. Они обеспечивают движение робота вдоль стены, когда нужно убрать по периметру помещения. Как правило, сенсоры позволяют выдерживать интервал от стены на уровне 10-15 мм. Этого вполне достаточно для уборки мусора подвижными щетками робота-пылесоса.

В случае, когда препятствие не попало в зону действия ни одного из перечисленных датчиков и столкновение с поверхностью все же произошло, в работу вступает третья группа датчиков, установленная в подвижном бампере робота-пылесоса, — датчики касания. При срабатывании они посылают сигнал в центральный процессор, а тот в свою очередь оперативно корректирует траекторию движения робота. Датчики касания выполнены либо в виде обычных концевых выключателей, либо в формате оптопары, в которой световой луч прерывается подвижным «флажком» в момент нажатия на передний бампер.

Система безопасности

Система безопасности предназначена для защиты робота-пылесоса от падений и неправильного его использования со стороны пользователя.

Защиту от падения с высоты обеспечивает группа датчиков, установленная в нижней части по периметру устройства.

Это уже привычные инфракрасные сенсоры, с тем же принципом действия, но вот логика их работы существенно отличается. Датчик постоянно отслеживает наличие твердой поверхности под колесами робота-пылесоса. Как только она пропадает (робот подъехал к краю ступени или пытается съехать с высокого порожка), центральный процессор получает тревожный сигнал с датчика и изменяет траекторию движения робота-уборщика.

Сочетание светлых и темных цветовых схем напольного покрытия может вызвать ложные срабатывания оптических датчиков высоты, вследствие чего робот просто откажется проводить уборку темных зон.

В мотор-редукторах, приводящих в движение колеса пылесоса, установлены датчики опрокидывания робота. Если одно или оба колеса окажутся вывешенными, срабатывание датчиков приведет к остановке моторов. Это убережет аккумуляторную батарею от разрядки. Возобновление работы возможно только после установки робота-пылесоса на ровную поверхность.

Датчик опрокидывания — обычный концевой выключатель, разрывающий цепь питания при опрокидывании пылесоса или вывешивании одного из колес.

Чтобы не допустить использование робота-пылесоса без контейнера для сбора мусора, в приемный лоток устанавливают датчик наличия контейнера. Вариаций исполнения не так уж и много. Самый простой — установка концевого выключателя, более продвинутый — датчик в виде геркона. На корпусе контейнера устанавливают постоянный магнит, активирующий геркон, когда контейнер установлен на свое место. Процессор «видит» замкнутую цепь и «понимает» что устройство можно использовать.

Система парковки на базовую станцию

Возвращение на базовую станцию после уборки или в случае необходимости пополнения заряда аккумулятора, — еще одна интересная функция, реализованная в роботе-пылесосе. При выполнении процедуры возвращения на базовую станцию, задействованы две системы. На первом этапе — система позиционирования, которая отвечает за текущее положение устройства по отношению к базовой станции. Алгоритм определяет кратчайший оптимальный маршрут. Когда робот-пылесос находится в зоне видимости базовой станции, в работу включаются датчики парковки.

Система работает следующим образом. В базовой станции расположен мощный инфракрасный светодиод, выполняющий функцию маяка. В корпусе робота-пылесоса имеется пара оптических приемников, захватывающих луч маяка. Каждый из приемников передает процессору свое значение расстояния до маяка, а тот корректирует маршрут движения таким образом, чтобы оба значения сигналов сравнялись по величине. Как только это происходит, считается, что робот занял позицию прямо перед базой, после чего происходит его парковка на контактных площадках базовой станции.

Как видно, датчики робота-пылесоса превращают его в полностью автономное устройство, способное самостоятельно навести порядок в доме. Получается как в той известной песне Сережи Сыроежкина: «Вкалывают роботы, счастлив человек!». Единственное, за чем необходимо следить, чтобы девайс всегда находился в строю, так это за чистотой самих датчиков.

Источник статьи: http://club.dns-shop.ru/blog/t-172-robotyi-pyilesosyi/40303-kak-rabotaut-sensoryi-robotov-pyilesosov/

Читайте также:  Автомобили с японии мерседес
Оцените статью