Как устроена матричная оптика: разбираемся на примере разработок компании HELLA
Постепенный переход на светодиодные источники света в автомобилях уже несомненная тенденция. Лампы накаливания в ближайшем будущем останутся уделом устаревших конструкций. А сейчас высокоэффективные и долговечные фары постепенно отвоевывают позиции у традиционных. В маломощных осветительных приборах светодиоды уже вытеснили конкурентов, а вот в области головного света сражение еще идет. И основное оружие светодиодов — матричная оптика конструкции Hella.
Просто заменить газоразрядный или галогенный источник света на светодиоды — идея не новая. Еще в 2008 году подобная система появилась на машинах Lexus LS, а сейчас построенная по тому же принципу головная оптика стала базовой на многих массовых автомобилях. Например, новый кроссовер Skoda Kodiaq оснащен ею в базовой комплектации, как и соплатформенный VW Tiguan. На базе подобной конструкции можно создать даже адаптивное освещение, и оно не будет ничем принципиально отличаться от использующего газоразрядные источники света. Но настоящий прорыв в эффективности дает только матричная светодиодная оптика.
Качественный головной свет автомобиля должен быть не только ярким, но и освещать исключительно необходимые зоны. Кроме того, не слепить встречных водителей, выделять важные объекты и при этом учитывать особенности человеческого глаза в отношении контрастности освещения и светотеневой границы.
Адаптивное головное освещение на базе единого источника света во многом решает эти сложности, но настоящий прорыв возможен только при использовании матричного освещения, когда за каждую зону отвечает отдельный источник света с регулируемой яркостью, а управляется система интеллектуальным модулем, способным распознавать объекты перед машиной и регулировать освещенность различных зон по ситуации. И именно по этому пути пошла компания Hella при разработке своих матричных светодиодных модулей адаптивного освещения.
Идея использовать много фар для освещения нескольких зон перед машиной в случае традиционных источников света сталкивается с габаритными ограничениями. И газоразрядные источники света, и лампы накаливания имеют достаточно крупные размеры рабочей области и требуют объемной оптической системы.
В случае со светодиодным освещением такая проблема не стоит. Если отказаться от использования сменных светодиодных модулей, то на небольшой плате можно разместить более 50 светодиодов, а поскольку их световой поток имеет явную направленность, то подобная матрица диодов отлично работает с компактной и простой оптической системой.
На практике в оптике Audi Matrix LED с 25 светодиодами адаптивного освещения они собраны в сменные модули по пять светодиодов в каждом, и еще пять модулей используются для статического освещения — ближнего света и статического бокового. В следующем поколении оптических систем Hella, которые с 2016 года устанавливаются на машины Mercedes, применяется целых 84 светодиода на единой плате.
Перспективная LED-оптика разработки Hella по-прежнему имеет «всего» 25 светодиодов на единой плате, но за счет использования в оптической системе фары проекционного LCD-дисплея с разрешением 30 тыс. пикселей с матрицей 100х300 число контролируемых зон освещения возрастает на порядок.
Сложность подобной конструкции легко недооценить. При тех же габаритах, что и у традиционной фары, внутри матричная LED-оптика и ее система управления устроены на порядок сложнее. Чтобы не быть голословным, рассмотрим конструкцию и ее возможности на примере оптики Audi Matrix LED для модели A8 в кузове D4 2013 года. Не самой новой, но зато одной из самых распространенных в России и имеющей много общего со светодиодной матричной оптикой других машин Audi. На следующих поколениях и для других моделей, скорее всего, будет уже лазерный источник света.
Возможности и конструкция
Помимо конструкции самой оптической системы, важную роль для работы адаптивного освещения играет конструкция системы управления. В случае с матричной оптикой самым важным датчиком системы является LiDAR — дальномер оптического диапазона, позволяющий системе управления получить предоставления обо всех источниках света и объектах в зоне освещения головной оптики. Так же используются данные навигационной системы, датчики скорости автомобиля, дождя и освещенности и данные ассистента ночного видения, если он есть в автомобиле. На основании этих данных блок управления может использовать один из множества режимов работы.
Дальний свет для движения по автомагистрали включается на основании данных навигационной системы. В этом случае система Matrix Beam включает узкий луч с максимальной дальностью освещения, наилучшим образом подходящий для ночных поездок на высокой скорости.
Ближний свет с классической асимметричной формой светового пучка использует 15 отдельных светодиодов в каждой фаре и включается в населенных пунктах. Может применяться отдельно от адаптивного освещения. Дальняя зона освещения реализуется отдельным набором светодиодов и может быть отключена для реализации туристического или всепогодного режима.
Туристический режим используется при движении в странах с левосторонним движением для машин, созданных для движения правостороннего. Он позволяет уменьшить асимметрию светового луча при включенном режиме ближнего света. Включается режим или автоматически, по данным навигационной системы, или вручную, через меню мультимедийной системы.
Конструкцию основной оптической системы фары можно увидеть на рисунке, но помимо нее в конструкцию входят также модуль указателя поворота (разумеется, со светодиодами), модуль охлаждения, причем со сменным вентилятором, и внутренняя проводка.
Статическое освещение боковой зоны предназначено для облегчения маневрирования и безопасного проезда перекрестков. Специальная секция фары освещает широкую зону спереди-сбоку от автомобиля. Включается автоматически при малой скорости и включении указателя поворотов, а также при угле поворота рулевого колеса более 50 градусов и скорости менее 60 км/ч. При проезде перекрестков срабатывает режим освещения для перекрестков, который включается по данным навигационной системы и скорости менее 60 км/ч.
Всепогодное освещение используется в условиях тумана и снегопада. В этом случае снижается мощность ближнего света и включается статическое освещение боковых зон. Включается режим вручную, кнопкой на панели, а ассистент дальнего света при этом отключается.
Динамическое адаптивное освещение работает на скорости более 60 км/ч вне населенных пунктов. Используется матрица из 25 светодиодов дальнего света, создающая 25 независимых сегментов. Система обеспечивает изменение направления луча света в зависимости от рельефа, не ослепляет встречный и попутный транспорт, снижает яркость в зонах расположения источников с высоким коэффициентом отражения — дорожных знаков и все другие функции адаптивности.
Маркирующая подсветка пешеходов срабатывает вне населенных пунктов и скорости более 60 км/ч, при наличии ассистента ночного видения. Секции дальнего света фар в направлении пешехода мигают, привлекая внимание водителя, а силуэт пешехода подсвечивается красным на дисплее приборной панели.
Помимо датчика LiDAR в работе системы задействованы блок управления корректора фар и блок комфорта бортовой сети. Причем самих корректоров у адаптивной оптики нет по двум причинам. На машинах с матричной LED-оптикой установлена пневмоподвеска и сама оптика имеет высокий запас адаптивности даже в режиме ближнего света за счет разделения зон. Так что блок управления в строгом смысле слова блоком коррекции уровня не является, просто располагается и подключен так же, как блок коррекции на машинах без этой системы. Помимо внешних блоков, используются три блока контроля в самой фаре.
Конструкция модуля охлаждения для светодиодной оптики крайне важна, так как от него зависит долговечность самих светодиодов и он включает в себя индивидуальные воздуховоды для каждой диодной сборки и множество датчиков. Вместо линз в этом поколении оптики используются зеркальные отражатели, имеющие повышенную стойкость к перегреву. Снаружи корпус закрыт общим герметичным колпаком.
В целом развитие автомобильного света уже семимильными шагами идет по пути внедрения интеллектуального светодиодного освещения, в чем корреспонденты журнала «Движок» убедились на практике, сравнив его с адаптивным биксеноновым. Ну а постепенное удешевление конструкции и ее повсеместное внедрение в ближайшем будущем позволит значительно улучшить ситуацию с освещением на дороге, а следовательно, и с безопасностью.
Источник статьи: http://dvizhok.su/parts/kak-ustroena-matrichnaya-optika-razbiraemsya-s-razrabotkami-kompanii-hella
Устройство фар автомобиля
Светотехника на машине – основа безопасности и удобства на дорогах. Это такая же неотъемлемая часть транспортного средства, как колёса и руль. В то же время, видов и конфигураций световой техники на машину существует довольно много. В этой статье мы рассмотрим основные типы передних фар и их назначение.
По прямому функционалу передние фары автомобиля можно разделить на отдельные классы:
- Габаритные огни – предназначены для обозначения габаритов транспортного средства, стоят спереди и сзади.
- Ближний свет – основные фары, предназначенные для освещения дороги непосредственно перед машиной, светят они ярко, но только на ограниченное небольшое расстояние, около 40–50 метров.
- Дальний свет – фары, светящие на большое расстояние, на 200-300 метров. Они обеспечивают комфортный световой путь даже на очень большой скорости.
- Противотуманные фары – дополнительные фары для ухудшенных погодных условий (метель, туман и прочее). При одновременном использовании с ближним светом противотуманки сильно слепят других участников движения.
- Ходовые огни работают днём для дополнительного обозначения машины. Впервые получили применение в странах Скандинавии и Британских островов, там, где иногда днём освещение недостаточное для полного обеспечения безопасности.
- Специальные передние световые устройства, вроде раллийных фар, световых искателей, прожекторов и прочее.
Устройство фары
Устройство фары автомобиля примерно одно для всех модификаций. Свечение создаётся за счёт трёх сегментов фары.
Источник света
Излучение лампы не направлено прямо, как фонарь, на самом деле, она скорее светит во все стороны, направляя частицы света на следующий сегмент.
Отражатель
Он бывает разной формы, часто это относительно правильный конус, но может быть множество вариаций в зависимости от конфигурации фары и дизайна передней части машины в целом. Обычно это стекло или пластмасса с небольшим напылением алюминия. Как вполне ясно из внутренней формы слова – основная его задача – отражать, весь свет, который на него попадает. При этом отражении он усиливается. Специальные корректоры в свою очередь ограничивают световую зону, направляя луч света. В плане отражения света можно также выделить три основных подтипа:
- Параболический отражатель. Самый простой, дешёвый и распространённый. Это статичная конструкция, отражающая свет горящей лампы. Такую фару нельзя подкорректировать, яркость, интенсивность, направление света в них статичны.
- Рефлектор свободной формы (Free Form Reflector). Такой рефлектор разделён на несколько зон (количество их может сильно варьироваться), каждая отражает и направляет свой пучок света. Свет таких фар также статичен, но более отчётлив, меньше светопотеря при рассеивании, значительно меньше вероятность ослепления других водителей или себя.
- Линзовая оптика. Свет от лампы в этом случае рассеивается и усиливается специальным эллиптическим светоотражателем, но после этого направляется на второй фокус – специальный щиток, вновь собирающий этот свет. От этой перегородки свет снова рассеивается в сторону линзы, та собирает его, где-то обрезая, где-то перенаправляя. Такая оптика максимально исключает чрезмерную светопотерю и ослепление светом. Линзовая оптика дорога, но очень качественна и обеспечивает максимальную безопасность даже в условиях трудной видимости. Главная проблема – вся эта система довольно динамична, в ходе износа или повреждения стабильность линзы может понизиться, могут возникнуть неисправности, светопотери. В таком случае линза требует специфической корректировки в автосалоне.
Принцип работы ксеноновых фар
Рассеиватель
Это внешняя часть фары, также из стекла или специального материала. Видели на фото или киносъёмках огромные белые листы на штативе? Назначение автомобильного рассеивателя схожее. Его задачи – защищать фару от внешнего воздействия, а также рассеивать и направлять её свет. Скажем, противотуманные фары светят скорее не прямо вперёд, а как бы «под ноги», вниз — вперёд. Для этих функций форма рассеивателя может быть разной. Несколько иной метод работы у светодиодных и матричных фар, мы рассмотрим эту специфику чуть позже, когда будем говорить о светодиодах отдельно.
Это функциональное распределение фар, одинаковое для любого транспортного средства. Можно их разделить и по принципу устройства. Научный прогресс не стоит на месте, технологи и проектировщики задаются одним важным вопросом: как обеспечить максимальную безопасность и дальность освещения, при этом нивелируя ослепляющим фактором. Также важны принципиально надёжность фары, прочность, длительный ресурс использования, экологичность, не забываем о дизайне.
Виды ламп
Фары по методу действия лампы можно выделить в четыре типа:
- Лампы накаливания
- Галогенные
- Ксеноновые
- Светодиодные
Лампа накаливания
Самые простые, такие же, как обычные лампочки. Работа её обеспечивается вольфрамовой нитью, помещённой в безвоздушную стеклянную колбу. При подаче напряжения происходит нагрев вольфрамовой нити, что и порождает свет. Такие лампы не очень надёжны, они морально устарели: вольфрам постоянно испаряется с нити. Она утончается, что приводит в итоге к разрыву. Также такие устройства легко темнеют и очень восприимчивы к перепадам напряжения. Они ещё широко используются в быту, но постепенно выходят из употребления по причине множественных недостатков. На транспортных средствах уже не используются.
Галогенные лампы
Также часто используются в быту. Механизм её работы примерно такой же, – накаливание вольфрамовой нити, однако за счёт того, что внутрь колбы закачаны пары галогенов (йода или брома), которые взаимодействуют с атомами вольфрама и не дают последним осесть, они двигаются вокруг нити по спирали, периодически снова к ней прилипая.
Срок службы таких ламп во много раз дольше обычных ламп накаливания. Такие лампы имеют долгий ресурс эксплуатации, Здесь многое зависит от качества и, соответственно, стоимости. Хорошие галогенные лампы могут работать в течение нескольких лет постоянной эксплуатации. В технической документации обычно прописывают небольшие сроки службы, около тысячи часов непрерывной работы и далее, по факту же качественная галогенная лампа может прослужить в два–три раза дольше, чем предполагает срок эксплуатации. Важна здесь также полная исправность проводки в автомобиле. Неполадки с электроникой или аккумулятором сказываются на длительности работы фар.
Ксеноновые лампы (газоразрядные)
Также распространены в автомобильной промышленности. Первыми здесь были, как всегда, немцы – они поставили ксеноновые фары на BMW седьмой серии в 1994 году. Работает такое устройство за счёт нагревания газа ксенона – благородного газа, при нагревании выделяющего множество света. Такие лампы значительно мощнее газоразрядных. Скажем, при мощности в 35 Вт ксеноновая лампа рождает световой поток в 3000–3200 лм, что на треть больше, чем способна выдать галогенная лампа при вдвое большей мощности.
Ксеноновые лампы экономят электричество, выдают много света и долго служат (срок службы ксеноновой фары составит около двух тысяч часов, примерно в два–три раза больше, чем у своего галогенного аналога.), но дорого стоят. В таком устройстве кроме простых трёх агрегатов, о которых мы уже говорили, есть ещё и специальные нагреватели ксенона, состоящие из блока розжига и электронной системы управления температурой и мощностью. Эти механизмы повышают цену на фару в несколько раз.
Светодиоды
В основе светодиодного фонаря – полупроводниковый кристалл, который преобразует электрический ток в свет. Сначала такие устройства появились в промышленной сфере, но теперь они широко интегрированы в быт. В автомобильной промышленности светодиоды начали использоваться для побочного освещения — стоп-сигналы, подсветка приборной доски, освещение в салоне и так далее.
Считалось, что светодиодные лампы недостаточно ярки для установки в головные фары. Сейчас они светят очень ярко за счёт того, что устанавливаются целыми сегментами-сотами внутрь фары. Один светодиод выделяет меньше света, чем ксеноновая лампа, но установленные вместе они вполне покрывают нужное для безопасности количество освещения. Светодиод сам по себе представляет самодостаточный источник света. На некоторых моделях авто светодиодная фара состоит из двух–трёх десятков отдельных диодов. В каждом из них есть линза, кристалл, анод и катод, обеспечивающие постоянно напряжение тока. Перегорание или неисправность одного диода обычно не тащит за собой поломку остальных.
Лазер
Самая новая технология, которую активно развивают, это лазерные фары. Впервые такие фары применили на футуристичном автомобиле BMW i8. Технология фары достаточно проста — лазер светит на линзу с фосфором, который в свою очередь начинает излучать яркий свет, а отражатель направляет этот свет на дорогу.
Они превосходят светодиодные фары по освещению и энергопотреблению, а срок службы сопоставим. Существенным недостатком этих фар является их стоимость, они являются самыми дорогими фарами современности, не менее 10 тыс. евро, за эту сумму можно купить новый бюджетный автомобиль.
Современные разработки
Момент устройства светодиодной фары доведён до технологического абсолюта в фаре матричной. В ней водитель может менять и подстраивать под себя и нужды дорожной ситуации отдельный диод. Такие матричные светодиоды могут индивидуально подстроиться под любую, даже сложную обстановку с видимостью.
Головные лампы на светодиодах появились десять лет назад. Светодиодные фары на машинах становятся всё популярнее по причине того, что у них практически нет недостатков. Они потребляют мизерное количество электроэнергии, их ресурс в несколько раз может превышать срок службы других фар, при соблюдении температурного режима ресурс эксплуатации такой лампы будет от пяти тысяч часов и более. Единственный, но ощутимый минус – дороговизна. На современном автомобильном рынке фары в целом – удовольствие не из дешёвых и приближается к стоимости лазерных фар – за цену светодиодной фары иногда можно купить целый автомобиль, пускай и подержанный. С другой стороны, такая лампа при правильной эксплуатации может прослужить много лет и ни разу о себе не напомнить, что в итоге может вылиться в солиднейшую экономию.
Изначально светодиодные фары ставились на машины премиум-класса, на некоторые модели Cadillac, Audi. Сейчас же некоторые производители делают фары на светодиодах, которые можно поставить на место фар ксеноновых, так что светодиодное освещение теперь можно ставить и на марки, изначально на это не рассчитанные. В целом мнение автомобилистов сходится в том, что светодиодные фары, так или иначе, захватят рынок.
Проблема с недостатком света решена благодаря технологическим новшествам, а цена будет постепенно снижаться под натиском спроса и уменьшения цен на материалы. Возможно, в недалёком будущем большая часть автомобилей будет оснащена именно светодиодными фарами. Но пока, по объективным причинам основой рынка остаются фары ксеноновые и галогенные.
Источник статьи: http://autoleek.ru/jelektrooborudovanie/sistema-osveshhenija/ustrojstvo-far-avtomobilya.html