Вечная батарея для автомобиля

Создана первая в мире «вечная» батарейка. Она стоит дешевле литиевых аккумуляторов. Видео

В США созданы первые прототипы бета-гальванической батареи, способной работать 28 тыс. лет. В ее основе лежит сердечник из переработанных ядерных отходов, но для человека она безопасна за счет покрытия из специальных синтетических алмазов. В России тоже есть подобные батареи, но они работают не дольше 20 лет.

Бесконечный источник энергии

Американские ученые из компании Nano Diamond Battery разработали «вечный» источник питания, способный работать тысячи и даже десятки тысяч лет. Они создали так называемую «бета-гальваническую батарею» (betavoltaic) и, по их заверениям, даже успешно испытали их в лабораторных условиях. В отечественном институте НИТУ «МИСиС» бета-гальванические элементы питания называют бетавольтаическими.

Как сообщил ресурсу New Atlas исполнительный директор Nano Diamond Battery Нима Голшарифи (Nima Golsharifi), одна такая батарейка может работать до 28 тыс. лет. Такой элемент питания может использоваться, по мнению разработчиков, в самых разных видах техники, начиная от носимых устройств и мобильных гаджетов и заканчивая средствами передвижения – поездами, электромобилями и даже самолетами.

Как работают такие батареи

В основе работы бета-гальванических батарей лежит принцип преобразования альфа- и бета-излучений радиоактивного вещества в обычный электрический ток, питающий всю современную технику. Как заверил Нима Голшарифи, созданным компанией источникам энергии можно придавать практически любую форму, другими словами, их можно выпускать в виде привычных многим батареек различных форматов – АА, 18650, CR2032 и др.

Читайте также:  Неисправности систем энергоснабжения автомобиля

Конструкция бета-гальванической батареи состоит в первую очередь из радиоактивного сердечника, который выступает в качестве источника изотопов. Нима Голшарифи подчеркнул, что сердечник изготавливается из небольшого количества переработанных ядерных отходов.

Для того чтобы сделать батареи безвредными для людей и окружающей среды, специалисты Nano Diamond Battery покрыли «фонящий» сердечник специальными нерадиоактивными синтетическими алмазами, выращенными в лабораторных условиях. Это очень дешевые в производстве аналоги обычных алмазов.

Изотопы радиоактивного элемента в процессе так называемого «неупругого рассеяния» взаимодействуют с алмазным покрытием, и в итоге энергия бета-излучения преобразуется в электрический ток.

Столь значительный период работы батарей разработчики объяснили тем, что используемое в качестве сердечника вещество может оставаться радиоактивным сотни и тысячи лет. Они отметили также, что такие батареи могут вырабатывать чрезмерно большое количество энергии, которую они предлагают хранить в дополнительной «буферной» емкости. В качестве такой емкости могут служить суперконденсаторы, а в России, как сообщал CNews, как раз научились изготавливать их из бесполезного сорного растения – борщевика.

Лабораторные испытания

Прототипы бета-гальванических батарей, разработанные в Nano Diamond Battery, были протестированы в двух лабораториях – Кавендишской лаборатории Кембриджского университета и Ливерморской национальной лаборатории им Э. Лоуренса. Результаты испытаний показали, что творение ученых компании обходили другие элементы питания на основе синтетических алмазов – если те демонстрировали 15-процентный прирост эффективности в сравнении с традиционными батареями, включая литий-ионные, то в случае разработки Nano Diamond Battery этот показатель был 40-процентным.

В то же время разработчики пока не могут точно сказать, когда элементы питания, основанные на разработанной ими технологии, начнут использоваться повсеместно. Первые версии таких элементов питания, пригодные для повседневного использования, могут появиться в течение двух лет.

По их заявлению, использование таких батарей, к примеру, электромобилях намного более эффективно в сравнении с литиевыми. При тех же габаритах они смогут нести в себе большее количество энергии, а использование дешевого искусственного алмаза вместо дорогого лития позволит снизить итоговую стоимость электрокаров.

Тем временем в России

Отечественные специалисты тоже смотрят в сторону атомных портативных элементов питания. К примеру, сотрудники НИТУ «МИСиС» в августе 2020 г. продемонстрировали собственный прототип такой батареи, конструкция которой основана на запатентованной микроканальной 3D-структуре никелевого бета-гальванического элемента. Срок службы такой батарейки – 20 лет.

Особенность трехмерной структуры батарейки заключается в том, что радиоактивный элемент наносится с двух сторон так называемого планарного p-n перехода, что позволяет упростить технологию изготовления элемента, а также контролировать обратный ток, который «крадет» мощность батареи. Особая микроканальная структура обеспечивает увеличение эффективной площади преобразования бета-излучения в 14 раз, что в результате дает общее увеличение тока.

За счет оригинальной 3D-структуры бета-гальванического элемента размеры батареи, по словам разработчиков, уменьшились втрое, удельная мощность повысилась в 10 раз, а себестоимость снизилась на 50%.

«Выходные электрические параметры предложенной конструкции составили: ток короткого замыкания IКЗ — 230 нА/см 2 (в обычной планарной — 24 нА), итоговая мощность — 31 нВт/см 2 , (в планарной — 3 нВт). Конструкция позволяет на порядок повысить эффективность преобразования энергии, выделяющейся при распаде β-источника, в электроэнергию, что в перспективе снизит себестоимость источника примерно на 50% за счет рационального расходования дорогостоящего радиоизотопа, — отметил один из разработчиков Сергей Леготин, доцент кафедры полупроводниковой электроники и физики полупроводников НИТУ «МИСиС».

Батарейка может быть применена в нескольких функциональных режимах: в качестве аварийного источника питания и датчика температуры в устройствах, используемых при экстремальных температурах и в труднодоступных (или совсем не доступных) местах: в космосе, под водой, в высокогорных районах.

Источник статьи: http://www.cnews.ru/news/top/2020-08-26_sozdana_pervaya_v_mire_vechnaya

Случайное открытие: практически «вечный» аккумулятор

Постепенная потеря ёмкости аккумулятором является одной из насущных проблем отрасли. Современные литиево-ионные аккумуляторы, как обещают их разработчики, могут выдерживать примерно 500–1000 циклов перезарядки. Но открытие исследователей Калифорнийского университета в Ирвайне может помочь увеличить жизненный цикл батарей в десятки и сотни раз.

Как утверждается в соответствующей научной публикации «100k Cycles and Beyond: Extraordinary Cycle Stability for MnO2 Nanowires Imparted by a Gel Electrolyte», учёным удалось добиться существенного увеличения времени жизни аккумулятора благодаря замене жидкого электролита гелевым электролитом на основе полиметилметакрилата (PMMA) в батарее с золотыми нанонитями. Сами нанонити покрыты слоем двуокиси марганца. Для нанонитей с толщиной покрытия двуокиси марганца 300 и 222 нм жизненный цикл составил более 100 тысяч циклов зарядки-разрядки, а рекордное значение 200 тыс. достигнуто при использовании нанонитей с оболочкой толщиной 143 нм.

Изначально это был эксперимент с использованием нанотехнологий в аккумуляторах. Но в ходе исследований изобретатели неожиданно обнаружили, что ёмкость аккумуляторов практически не снижается после большого количества перезарядок.

Пока что учёные сами не могут объяснить это явление. Выход по току после 100 тыс. циклов зарядки-разрядки остаётся на уровне 96 %. Для нанонитей с оболочкой толщиной 143 нм после 30–40 тыс. циклов выход по току составляет более 98 %. В предыдущих экспериментах с использованием жидкого электролита жизненный цикл достигал 2–8 тыс. циклов зарядки-разрядки.

В научной публикации приводятся подробности изготовления гелевого электролита. Для этого изобретатели добавили 1,6 грамма полиметилметакрилата к пяти миллилитрам окиси хлора и лития в сухом поликарбонате. Смесь была растворена с помощью нагрева до 115 градусов Цельсия. В эксикаторе (специальный сосуд для высушивания) масса была охлаждена до комнатной температуры, после чего она преобразовалась в гелеобразное состояние.

Отметим, о серийном производстве новых аккумуляторов речь пока не идёт. Дело не только в высокой стоимости (использование золота для нанопроводников, а также высокая сложность изделия) — технологически процесс производства ещё не проработан.

Разработчики аккумуляторов непрерывно трудятся над созданием более совершенных источников питания, так как современные батареи в большинстве случаев не могут полностью удовлетворить потребителя. Так, компания Sony пообещала выпустить ёмкую батарею с твёрдым электролитом, но она характеризуется жизненным циклом всего 2 тыс. циклов заряда-разряда. В Стэнфордском университете предложили аккумулятор с кремниевыми анодами ёмкостью в 10 раз выше типичных решений. Но особой «долговечностью» он вряд ли будет отличаться.

Источник статьи: http://3dnews.ru/931922

«Вечный» аккумулятор из нанопроволоки. Будущее наступило?

От кардиостимулятора до нержавеющей стали и липучки — некоторые из самых полезных изобретений в мире были сделаны случайно. Батарея с нанопроволокой когда-нибудь тоже может попасть в этот список.

Литий-ионный аккумулятор в вашем ноутбуке или смартфоне рассчитан только на 300-500 циклов заряда-разряда, или примерно 2-3 года. Все зависит от того, как вы его используете. Например, как правило, от 5 до 10 циклов неглубокой разрядки равны одному полному циклу разрядки. На самом деле рекомендуется использовать циклы частичной разрядки для увеличения срока службы батареи, при этом вам следует избегать ее полной разрядки.

Достаточно сказать, что независимо от того, насколько вы осторожны, литий-ионный аккумулятор в конечном итоге перестанет заряжаться. Большинство из них окажется на свалках, потратив впустую много ресурсов, которые были потрачены на добычу лития и производство батарей, а также приведут к загрязнению окружающей среды.

Вот почему ученые всегда ищут батареи, которые могут хранить приличное количество заряда и выдерживать гораздо большее количество циклов, избегая при этом токсичных компонентов или проблем с производством.

Использование нанопроволоки в батареях может быть многообещающей альтернативой классическим аккумуляторным технологиям. Как ни странно, Мья Ле Тай, которая в 2016 году была кандидатом на степень доктора философии в Калифорнийском университете, сделала совершенно неожиданное открытие.

Нанопроволока — это крошечные проводящие проволочки диаметром менее 100 нанометров с хорошими свойствами батарей. Но их крошечный размер делает их чрезвычайно хрупкими, из-за чего они легко изнашиваются и трескаются после нескольких циклов зарядки.

В один прекрасный день Ле Тай заменила жидкий электролит, который омывал узел нанопроволоки, гелевым веществом. Во время последующих тестов она позже, к своему большому удивлению, обнаружила, что батарея с нанопроволокой прошла более 10 000 циклов зарядки и продолжает работать. Несколько дней спустя он все еще работал более 30 000 раз. Так продолжалось месяц.

Гель, густой, как арахисовое масло, медленно просачивается в поры нанопроволок, сделанных из оксида марганца. Это делает их более мягкими, что значительно снижает их хрупкость.

«Если вы можете получить 100 000 циклов от одной литий-ионной батареи, это может означать, что вам никогда не придется покупать новую», — сказал Реджинальд Пеннер, заведующий кафедрой химии университета. «Мы говорим о сроке работы в 20 лет, может быть, даже дольше».

Ле Тай и другие в команде Пеннера все еще экспериментируют с гелевыми батареями с нанопроволокой. Между тем, рынок делает большие ставки на них из-за их быстрой зарядки и гораздо более длительного срока службы по сравнению с литий-ионными. По одной из оценок, рынок аккумуляторов на основе нанопроводов вырастет с 53 миллионов долларов в 2021 году до 243 миллионов долларов к 2026 году. Большая часть этого роста будет вызвана высоким уровнем внедрения электромобилей в ближайшие 4-5 лет.

Дорогие друзья, нам очень важна ваша поддержка — подпишитесь на канал. Нажмите палец вверх — Вам не сложно, а автору приятно.

Источник статьи: http://zen.yandex.ru/media/nattech/vechnyi-akkumuliator-iz-nanoprovoloki-buduscee-nastupilo-5fad366cd59a05137b95ef70

Революция в обеспечении устройств энергией? В США патентуют «вечные» и безопасные ядерные батарейки

Элемент питания, который прослужит всю жизнь и даже больше, – это ли не мечта многих пользователей самых разных устройств?
Иллюстрация NDB.

Пока создатели «батареек будущего» могут представить публике лишь красивые рисунки.
Иллюстрация NDB.

Даже если электромобиль с новым аккумулятором попадёт в аварию, это не станет катастрофой для окружающей среды. Всё дело в строении новой батареи, за прочность которой отвечают алмазные структуры.
Фото Global Look Press.

Принцип работы нового бета-вольтаического элемента. Перевод Вести.Ru.
Иллюстрация NDB.

Представьте себе, что вы покупаете аккумулятор для автомобиля, используете его без подзарядки 20 лет, затем покупаете новый автомобиль и переставляете в него всё тот же аккумулятор. Представили? Компания NDB обещает, что так вскоре будет со всеми батареями и батарейками. Да-да, и смартфон тоже не надо будет больше ставить на зарядку. Никогда.

Как такое возможно? И почему учёные раньше не догадались обеспечить мир «вечными» аккумуляторами?

На самом деле идея, которая лежит в основе новой удивительной батарейки была озвучена учёными из Великобритании в 2016 году. И Вести.Ru об этом подробно рассказывали. Теперь же инженеры представили не сырую идею, а проверку концепции такого продукта. В дальнейшем наработки планируется использовать для создания первого прототипа «вечной» ядерной батарейки.

Представители калифорнийской компании NDB заявляют, что её наноалмазные батареи будут действовать как крошечные ядерные генераторы электрического тока.

Они будут иметь плотность энергии выше, чем у существующих литий-ионных аккумуляторов, и смогут работать до 28 тысяч лет без необходимости подзарядки. При этом будет практически невозможно сломать такое устройство и оголить «ядерный реактор», отвечающий за столь выдающиеся характеристики.

Сердце каждого такого генератора ‒ это небольшой кусочек переработанных ядерных отходов. Инженеры NDB планируют использовать части графитовых блоков ядерного реактора, которые поглотили излучение топливных стержней и сами стали радиоактивными.

Такой графит богат изотопом углерода-14, который подвергается бета-распаду до азота, высвобождая при этом антинейтрино и электрон. Представители компании NDB планируют брать этот графит, особым образом очищать его (нужные изотопы распределены по материалу неравномерно) и использовать для создания из углерода-14 крошечных алмазов.

Углерод-14 распадается до азота, генерируя в процессе антинейтрино и электрон. Радиоактивный алмаз из углерода-14 будет полностью покрыт слоем дешёвого, нерадиоактивного, созданного в лаборатории алмаза из углерода-12. Последний задерживает высокоэнергетические частицы, предотвращает утечку излучения и действует как сверхтвёрдый защитный слой, спасающий всю конструкцию от неумелого обращения.

В то же время алмазная структура действует как теплоотвод, выводящий тепло наружу и делающий всю конструкцию термостабильной.

Чтобы создать аккумулятор, несколько слоев такого наноалмазного материала помещаются в единый корпус вместе с крошечной интегральной схемой и небольшим суперконденсатором для сбора, хранения и мгновенного распределения заряда.

В NDB заявляют, что по такой технологии можно будет создать конечный продукт любой формы или стандарта, хоть в виде «пальчиковых», хоть в виде «мизинчиковых» батареек, а также типоразмера 18650 и 2170, и всевозможных нестандартных размеров тоже.

Уровни излучения от такой батарейки будут ниже, чем уровни излучения, производимые самим человеческим телом (в котором тоже постоянно происходит распад углерода-14). Это делает новинку полностью безопасной для использования в самых разных областях.

Небольшие аккумуляторы смогут питать кардиостимуляторы и другие электронные имплантаты, долгий срок службы которых позволит пользователям забыть об операциях по замене батареек (и тут вспоминается Тони Старк, создавший для себя подобное «сердце»). Такие аккумуляторы также могут быть размещены непосредственно на печатных платах устройств, обеспечивая их бесперебойную работу в течение всего срока службы.

Нил Нэйкер (Neel Naicker) из NDB приводит пример применения новинки в бытовой электронике: «Представьте себе iPhone, с батареей того же размера, которая заряжается с нуля до полной пять раз в час. Представьте себе это. Представьте себе мир, в котором вам вообще не придётся заряжать аккумулятор в течение дня. А теперь представьте себе, что устройство не надо будет заряжать неделю, месяц… Как насчёт десятилетий? Вот, что мы можем сделать с помощью этой технологии».

Аккумулятор можно будет масштабировать и до размеров электромобиля и даже сделать ещё больше. По прогнозам, такое устройство прослужит до 90 лет, то есть его можно будет вытащить из старого автомобиля и вставить в новый.

Ещё один большой плюс такой разработки: перерабатываются ядерные отходы, которые, оставаясь необработанными, представляют большую опасность для мира, дороги в хранении и обладают очень длительным периодом полураспада.

Как утверждают представители NDB, конечный продукт будет конкурентоспособным по стоимости, а в некоторых случаях он будет даже значительно дешевле, чем существующие литиевые батареи. Дело в том, что поставщики ядерных отходов будут доплачивать компании NDB за то, что её представители забирают у них отработавшие своё опасные материалы.

Если же часть батареи выйдет из строя, то активную часть наноалмазов можно быть переработать для создания новых наноалмазов. Когда же аккумулятор достигнет конца своего срока службы, который, напомним, может составлять до 28 тысяч лет для маломощного устройства (использующегося, например, в космическом спутнике), от него не останется ничего кроме «безвредных побочных продуктов».

«NDB может решить главную глобальную проблему выбросов углерода одним махом без дорогостоящих инфраструктурных проектов, затрат на транспортировку энергии или негативного воздействия на окружающую среду», – отмечает Джон Шоу-Тейлор (John Shawe-Taylor), профессор Университетского колледжа Лондона и представитель кафедры ЮНЕСКО.

Даже если когда-нибудь компания полностью использует для производства своей продукции все мировые запасы ядерных отходов с содержанием углерода-14 ‒ перспектива, которая потребует очень серьёзных объёмов производства ‒ NDB сможет создавать собственное сырьё для «вечных» батарей (как с уверенностью заявляют в компании, «просто и с минимальными затратами»).

Когда же ждать революционный продукт?

На сайте компании утверждается, что инженерами уже осуществлена демонстрация практической осуществимости данной технологии.

Сейчас NDB находится на последней стадии привлечения финансирования, которое будет использовано для создания центра по производству прототипа подобных батарей. Компания готова приступить к созданию коммерческого прототипа, как только лаборатории снова откроются после окончания пандемии COVID-19.

Через пару лет компания обещает выпустить продукт, который будет обеспечивать низкую мощность, а через пять полноценный аккумулятор.

Представители NDB заявляют, что значительно опережают своих конкурентов, создающих другие бета-вольтаические элементы питания, поскольку патенты на её технологии и производственные процессы уже находятся на рассмотрении соответствующих органов.

Если в итоге будет создан конкурентноспособный продукт, это произведёт настоящую революцию в энергоснабжении. Ведь даже дома, оборудованные системами NDB, можно будет не подключать к энергетическим системам. Каждая их батарея будет становиться собственным почти неисчерпаемым источником энергии, незаметно превращающим ядерные отходы в полезную энергию.

Добавим, что корреспонденты сайта New Atlas поговорили с членами команды NDB. C полной отредактированной стенограммой этого интервью (на английском языке) можно ознакомиться здесь.

Немного дополнительной информации можно найти в мультипликационном видео ниже, которое было выпущено в 2019 году.

Ранее мы также писали о «вечной» квантовой батарее и о созданном российскими учёными материале для «вечной» космической батарейки.

Источник статьи: http://www.vesti.ru/nauka/article/2449527

Оцените статью